С помощью чего работает передача информации. Передача данных в сети интернет. Обращение в суд в случае несанкционированного разглашения

3.1 Виды связи и режимы работы сетей передачи сообщений

Первоначальными видами сообщений могут быть голос, изображения, текст, данные. Для передачи звука традиционно используется телефон, изображений - телевидение, текста - телеграф (телетайп), данных - вычислительные сети. Передача документов (текста) может быть кодовой или факсимильной. Для передачи в единой среде звука, изображений и данных применяют сети, называемые сетями интегрального обслуживания.

Кодовая передача сообщений между накопителями, находящимися в узлах информационной сети, называется телетекстом (в отличие от телекса - телетайпной связи), а факсимильная связь называется телефаксом. Виды телетекса: электронная почта (E-mail) - обмен сообщениями между двумя пользователями сети, обмен файлами, "доска объявлений" и телеконференции - широковещательная передача сообщений.

Установление соединения между отправителем и получателем с возможностью обмена сообщениями без заметных временных задержек характеризует режим работы on-line ("на линии"). При существенных задержках с запоминанием информации в промежуточных узлах имеем режим off-line ("вне линии").

Связь может быть односторонней (симплексной), с попеременной передачей информации в обоих направлениях (полудуплексной) или одновременной в обоих направлениях (дуплексной).

3.2 Протоколы

Протоколы - это набор семантических и синтаксических правил, определяющий поведение функциональных блоков сети при передаче данных. Другими словами, протокол - это совокупность соглашений относительно способа представления данных, обеспечивающего их передачу в нужных направлениях и правильную интерпретацию данных всеми участниками процесса информационного обмена.

Поскольку информационный обмен - процесс многофункциональный, то протоколы делятся на уровни. К каждому уровню относится группа родственных функций. Для правильного взаимодействия узлов различных вычислительных сетей их архитектура должна быть открытой. Этим целям служат унификация и стандартизация в области телекоммуникаций и вычислительных сетей.

Унификация и стандартизация протоколов выполняются рядом международных организаций, что наряду с разнообразием типов сетей породило большое число различных протоколов. Наиболее широко распространенными являются протоколы, разработанные для сети ARPANET и применяемые в глобальной сети Internet, протоколы открытых систем Международной организации по стандартизации (ISO -Intrenational Standard Organization), протоколы Международного телекоммуникационного союза (International Telecommunication Union -ITU, ранее называвшегося CCITT) и протоколы Института инженеров по электротехнике и электронике (IEEE - Institute of Electrical and Electronics Engineers). Протоколы сети Internet объединяют под названием TCP/IP. Протоколы ISO являются семиуровневыми и известны как протоколы базовой эталонной модели взаимосвязи открытых систем - ЭМВОС).

3.3 Эталонная модель взаимосвязи открытых систем (ЭМВОС)

Базовая ЭМВОС - это модель, принятая ISO для описания общих принципов взаимодействия информационных систем. ЭМВОС признана всеми международными организациями как основа для стандартизации протоколов информационных сетей.

В ЭМВОС информационная сеть рассматривается как совокупность функций, которые делятся на группы, называемые уровнями. Разделение на уровни позволяет вносить изменения в средства реализации одного уровня без перестройки средств других уровней, что значительно упрощает и удешевляет модернизацию средств по мере развития техники.

ЭМВОС содержит семь уровней. Ниже приведены их номера, названия и выполняемые функции.

7-й уровень - прикладной (Application): включает средства управления прикладными процессами; эти процессы могут объединяться для выполнения поставленных заданий, обмениваться между собой данными. Другими словами, на этом уровне определяются и оформляются в блоки те данные, которые подлежат передаче по сети. Уровень включает, например, такие средства для взаимодействия прикладных программ, как прием и хранение пакетов в "почтовых ящиках" (mail-box).

6-й уровень - представительный (Presentation): реализуются функции представления данных (кодирование, форматирование, структурирование). Например, на этом уровне выделенные для передачи данные преобразуются из кода ЕBCDIC в ASCII и т.п.

5-й уровень - сеансовый (Session): предназначен для организации и синхронизации диалога, ведущегося объектами (станциями) cети. На этом уровне определяются тип связи (дуплекс или полудуплекс), начало и окончание заданий, последовательность и режим обмена запросами и ответаами взаимодействующих партнеров.

4-й уровень - транспортный (Transport): предназначен для управления сквозными каналами в сети передачи данных; на этом уровне обеспечивается связь между оконечными пунктами (в отличие от следующего сетевого уровня, на котором обеспечивается передача данных через промежуточные компоненты сети). К функциям транспортного уровня относятся мультиплексирование и демультиплексирование (сборка-разборка пакетов), обнаружение и устранение ошибок в передаче данных, реализация заказанного уровня услуг (например, заказанной скорости и надежности передачи).

3-й уровень - сетевой (Network): на этом уровне происходит формирование пакетов по правилам тех промежуточных сетей, через которые проходит исходный пакет, и маршрутизация пакетов, т.е. определение и реализация маршрутов, по которым передаются пакеты. Другими словами, маршрутизация сводится к образованию логических каналов. Логическим каналом называется виртуальное соединение двух или более объектов сетевого уровня, при котором возможен обмен данными между этими объектами. Понятию логического канала необязательно соответствие некоего физического соединения линий передачи данных между связываемыми пунктами. Это понятие введено для абстрагирования от физической реализации соединения. Еще одной важной функцией сетевого уровня после маршрутизации является контроль нагрузки на сеть с целью предотвращения перегрузок, отрицательно влияющих на работу сети.

2-й уровень - канальный (Link, уровень звена данных): предоставляет услуги по обмену данными между логическими объектами предыдущего сетевого уровня и выполняет функции, связанные с формированием и передачей кадров, обнаружением и исправлением ошибок, возникающих на следующем, физическом уровне. Кадром называется пакет канального уровня, поскольку пакет на предыдущих уровнях может состоять из одного или многих кадров.

1-й уровень - физический (Physical): предоставляет механические, электрические, функциональные и процедурные средства для установления, поддержания и разъединения логических соединений между логическими объектами канального уровня; реализует функции передачи битов данных через физические среды. Именно на физическом уровне осуществляются представление информации в виде электрических или оптических сигналов, преобразования формы сигналов, выбор параметров физических сред передачи данных.

В конкретных случаях может возникать потребность в реализации лишь части названных функций, тогда соответственно в сети имеется лишь часть уровней. Так, в простых (неразветвленных) ЛВС отпадает необходимость в средствах сетевого и транспортного уровней. В то же время сложность функций канального уровня делает целесообразным его разделение в ЛВС на два подуровня: управление доступом к каналу (МАС - Medium Access Control) и управление логическим каналом (LLC - Logical Link Control). К подуровню LLC в отличие от подуровня МАС относится часть функций канального уровня, не связанных с особенностями передающей среды.

Передача данных через разветвленные сети происходит при использовании инкапсуляции/декапсуляции порций данных. Так, сообщение, пришедшее на транспортный уровень, делится на сегменты, которые получают заголовки и передаются на сетевой уровень. Сегментом обычно называют пакет транспортного уровня. Сетевой уровень организует передачу данных через промежуточные сети. Для этого сегмент может быть разделен на части (пакеты), если сеть не поддерживает передачу сегментов целиком. Пакет снабжается своим сетевым заголовком (т.е. происходит инкапсуляция). При передаче между узлами промежуточной ЛВС требуется инкапсуляция пакетов в кадры с возможной разбивкой пакета. Приемник декапсулирует сегменты и восстанавливает исходное сообщение.

Основные элементы сети передачи данных (СПД)

Среда передачи данных - совокупность линий передачи данных и блоков взаимодействия (т.е. сетевого оборудования, не входящего в станции данных), предназначенных для передачи данных между станциями данных. Среды передачи данных могут быть общего пользования или выделенными для конкретного пользователя.

Линия передачи данных - средства, которые используются в информационных сетях для распространения сигналов в нужном направлении. Примерами линий передачи данных являются коаксиальный кабель, витая пара проводов, световод.

Характеристиками линий передачи данных являются зависимости затухания сигнала от частоты и расстояния. Затухание принято оценивать в децибелах, 1 дБ = 10*lg(P1/P2), где Р1 и Р2 - мощности сигнала на входе и выходе линии соответственно.

При заданной длине можно говорить о полосе пропускания (полосе частот) линии. Полоса пропускания связана со скоростью передачи информации. Различают бодовую (модуляционную) и информационную скорости. Бодовая скорость измеряется в бодах, т.е. числом изменений дискретного сигнала в единицу времени, а информационная - числом битов информации, переданных в единицу времени. Именно бодовая скорость определяется полосой пропускания линии.

Если на бодовом интервале (между соседними изменениями сигнала) передается N бит, то число градаций модулируемого параметра несущей равно 2 N . Например, при числе градаций 16 и скорости 1200 бод одному боду соответствует 4 бит/с и информационная скорость составит 4800 бит/с.

Максимально возможная информационная скорость V связана с полосой пропускания F канала связи формулой Хартли-Шеннона (предполагается, что одно изменение величины сигнала приходится на log 2 k бит, где k - число возможных дискретных значений сигнала)

V = 2*F*log 2 k бит/с,

так как V = log 2 k/t, где t - длительность переходных процессов, приблизительно равная 3*Т В, а Т В = 1/(2*p *F), k = 1+A, где A - отношение сигнал/помеха.

Канал (канал связи) - средства односторонней передачи данных. Примером канала может быть полоса частот, выделенная одному передатчику при радиосвязи. В некоторой линии можно образовать несколько каналов связи, по каждому из которых передается своя информация. При этом говорят, что линия разделяется между несколькими каналами. Существуют два метода разделения линии передачи данных: временное мультиплексирование (иначе разделение по времени или TDM), при котором каждому каналу выделяется некоторый квант времени, и частотное разделение (FDM - Frequency Division Method), при котором каналу выделяется некоторая полоса частот.

Канал передачи данных - средства двустороннего обмена данными, включающие аппаратуру конца данных (узел) и линию передачи данных.

Составные элементы СПД. Это совокупность аппаратных средств для представления информации в закодированной форме и преобразования ее с целью эффективного распространения сиг­налов по физической среде связи (ФСС) (каналу связи). В соот­ветствии с приведенным определением канал передачи данных можно представить состоящим из двух основных частей: аппаратуры передачи данных и физической среды связи, через которую передается информация. Варианты структур канала передачи данных показаны на рис. 4, а-в.

Сетевой тракт передачи данных. Это совокупность парал­лельно включенных каналов связи, организованных в линии раз­личного типа с помощью аппаратуры частотного или временного уплотнения, устройств преобразования сигналов, модемов и уст­ройств повышения достоверности передачи информации.

Функциональное назначение каждой из указанных частей ка­нала и тракта передачи данных определяет их техническое испол­нение. Конструктивно аппаратура передачи данных (АПД) соединяется с линией связи через специальные аппаратные средства (интерфейсы связи), которые выполняются на основе стандартных решений, требований и рекомендаций. Международные стандарты, опреде­ляющие соединение АПД с физической средой, называют рекомендациями серии Х (MKKТT), в частности Х.21 и Х.21 бис. В нашей стране интерфейсы связи называются СТЫКами, обозначаются заглавными буквами С с номером, стоящим справа: С1, С2, СЗ, С4. СТЫК С1 определяет структуру, состав и логику взаимодействия соединительных цепей между АПД и физической средой связи ФСС (рис. 1.20, а). Он также устанавливает параметры передачи (скорости, тип капала связи и др.) СТЫК С2 определяет параметры цепей обмена данными между оконечным оборудованием данных ООД и АПД при последовательном вводе/выводе данных той или иной абонентской системой (АС). В абонентской системе (АС) обмен и передача между отдельными устройствами (оконечными абонентами) (ОА) осуществляется па­раллельным образом, т. е. сигналы передаются одновременно по целой группе соединительных линий (цепей), на которые также имеются стандартные интерфейсы (стандарт ИРПР-интерфейс-радиальный параллельный). При подключении абонентской си­стемы к каналу передачи данных, во-первых, необходимо обеспе­чить сопряжение, которое выполняется с помощью адаптеров (А) через ИРПР, а во-вторых, сопряжение адаптера с каналом передачи данных и при необходимости в случае передачи на значительное


расстояние переход от параллельного способа обмена к последовательному через СТЫК С2.

Рисунок 4 - Структура канала передачи данных

Работу канала передачи данных можно организовать различ­ным образом: передавать данные только в одном направлении (симплексный СДД) (рис. 4, в), менять направления передачи (полудуплексный СПД) (рис. 4, б) и, используя две линии, ввести одновременную передачу в двух направлениях (дуплексный СПД), рис. 4. а.

Как видно из рис. 4, а-в основными компонентами канала передачи данных являются: адресат-получатель 0,4; с устройством приема ПР информации и отправитель ОЛ, с передатчиком ПК, кодер К 0 и декодер ДК. В схеме можно выделить так называемый непрерывный канал связи НКС, в который входят линии связи, приемный ДМ и передающий М модемы.

Непрерывный канал характеризуется полосой пропускания , уровнем шумов Р ш, затуханием и другими параметрами. При подключении к передатчику кодера, декодера и устройств защиты от ошибок, на основе непрерывного канала, образуется дискретный канал (ДКС).

Для установления физической и логической связей источника с системой передачи информации необходимо организовать сопряжение, которое осуществляется по принципу согласования скорости выбора сообщений источником и скорости их передачи по каналу связи. При этом главным согласующим принципом источника сообщений с каналом связи (это в равной мере относится к приемнику и абоненту) является согласование всех эле­ментов системы передачи информации по применяемым кодам и способам кодирования.

Под кодированием в общем случае понимается процесс представления сообщений с помощью специальных элементов в соответствии с набором правил, позволяющих эффективно реали­зовать передачу, обработку информации и другие информацион­ные процессы.

Как известно из теории информации, для непрерывного канала важнейшей характеристикой является его пропускная способ­ность, которую можно подсчитать следующим образом:

где -полоса пропускания канала;

Р с, Р ш -мощности сигнала и шума.

Из формулы следует, что имеют место два пути увеличения пропускной способности каналов: увеличение полосы пропускания канала связи, увеличение соотношения сигнал/шум.

В ИС применяют методы, реализующие каждый из указанных путей. В частности, если требуется обеспечить высокие скорости передачи сообщений, в качестве непрерывного канала применяют высокочастотные коаксиальные кабели или оптико-волоконные линии, имеющие сравнительно низкий уровень шумов и позволяю­щие передавать большое число импульсных посылок в единицу времени.

В непрерывном канале также для эффективного протекания / процессов передачи информации производятся модуляция, демодуляция, фильтрация и другие преобразования сигналов.

Непрерывный канал не позволяет обеспечить возросшие требования к процессам передачи информации, предъявляемые к информационным сетям. Решение проблемы – в применении дискретной передачи информации и ее кодирование помехоустойчивости.

По природе физической среды передачи данных (ПД) различают каналы передачи данных на оптических линиях связи, проводных (медных) линиях связи и беспроводные. В свою очередь, медные каналы могут быть представлены коаксиальными кабелями и витыми парами, а беспроводные - радио- и инфракрасными каналами.

Мы рассматривали историю развития компьютерных сетей. Рассмотрели все важные этапы становления сети Интернет и общие принципы ее работы.

Сегодняшняя наша тема будет называться: технологии передачи данных в сетях . Естественно, прежде всего, - компьютерных. В рамках данной статьи мы также рассмотрим основные средства передачи данных (понятия физических и логических интерфейсов), разберем основные технологии кодирования сигнала при его передаче, характеристики линий связи, а также - механизмы защиты от потерь.

Итак! Для чего существует сеть? Правильно, - для передачи по ней данных (информации). А как передается (распространяется) эта самая информация? Правильно, - через определенную среду передачи (кабельную инфраструктуру или - в диапазоне беспроводной связи).

Технологии передачи данных в своей работе используют (в зависимости от конкретной их реализации) различные физические интерфейсы.

Примечание: интерфейс это - физическая (или логическая) граница при взаимодействии нескольких независимых объектов - своеобразная прослойка между ними.

Интерфейсы делятся на две категории:

  1. физические интерфейсы
  2. интерфейсы логические

Физический интерфейс это - конечный порт подключения (разъем с группой электрических контактов). Например - интерфейс . А пара портов , соединенная с помощью разъемов и кабеля называется линией (каналом) передачи данных.


Логический интерфейс - это набор правил (протокол), который определяет саму логику обмена данными между связанными линией (сетью) устройствами.

Организация передачи данных в компьютерной сети происходит в тесном взаимодействии этих двух интерфейсов: физический компонент (сетевая карта) и логический (ее драйвер).

Обязательным условием для успешной реализации любой из технологий передачи данных является присутствие в потоке данных дополнительного компонента - протокола передачи .

Протокол передачи на логическом уровне представляет собой набор правил, которые определяют обмен данными между различными приложениями или устройствами. Эти правила задают единый способ передачи сообщений и обработки ошибок передачи. На физическом уровне протокол это - набор служебных данных, прикрепляющихся к основным пакетам (кадрам) информации, без которых просто невозможно эффективное взаимодействие в сети.

Протокол должен абстрагироваться (игнорировать) конкретную среду передачи, его задача - обеспечивать надежную связь между узлами в коммутационном облаке .


Давайте рассмотрим сам процесс организации передачи данных более подробно!

Сначала происходит вот что: приложение (программа) обращается к ОС за разрешением для сетевого взаимодействия с другим устройством (принтером, удаленным компьютером, камерой наблюдения и т.д.) Операционная система дает команду драйверу сетевой карты, который загружает в буфер карты первую порцию данных и инициирует работу интерфейса на передачу

На другом конце линии (сети) удаленное устройство принимает в буфер своей сетевой карты поступающие данные. После окончания передачи протокол проверяет нет ли в передаваемых частях (пакетах) данных ошибок (если надо запрашивает их повторную передачу) и загружает принятые данные из буфера карты в заранее зарезервированное пространство оперативной памяти. Оттуда уже конечное приложение (программа) извлекает информацию и работает с ней.

Вот - схемка, для наглядности (кликабельно):


На основании всего сказано выше, можно сделать такой вывод: технологии построения сети сводятся к тому, чтобы связать между собой удаленные устройства электрически и информационно! Т.е. - создать физическую среду передачи (кабель, беспроводная связь) и обеспечить общий протокол передачи данных по сети.

Клиент это - модуль (программа, служба, отдельный компьютер), служащий для формирования и передачи сообщений (запросов) к ресурсам удаленного устройства (серверу), с последующим приемом результатов от него и передачей их соответствующим приложениям на клиенте.

Сервер это - модуль (программа, служба...), который постоянно ожидает прихода из сети запросов от клиентов и обслуживающий (с участием локальной ОС) эти запросы.

Один сервер может обслуживать сразу множество клиентов.. Вот - еще пример: база данных, с которой работают клиенты. На них установлены клиентские модули программ, которые подключаются к базе и поддерживают только графический интерфейс работы с ней. Все вычисления и обработка, при этом, происходят на сервере и с использованием его ресурсов.


Познакомимся еще с одним определением! Клиент-серверная составляющая, которая предоставляет доступ к какому-то ресурсу компьютера через сеть называется сетевой службой . Причем, каждая служба связана с определенным типом сетевых ресурсов.

Например: служба печати позволяет нам распечатывать документы на сетевом принтере, а файловая служба - получать доступ к данным, находящимся на удаленных компьютерах. Для серфинга по Интернету есть своя веб-служба, которая состоит из серверной части (веб-сервера) и клиентской (веб-браузера) пользователя (IE, Opera, Firefox и т.д.)

В свете всего сказанного выше, технологии передачи данных должны опираться не просто на операционные системы, а на сетевые ОС, которые предоставляют пользователю доступ к информационным и аппаратным ресурсам других компьютеров. Причем эти операционные системы, согласно изложенным выше определениям, также делятся на два больших класса: серверные и клиентские ОС.

Клиентские системы обращаются, в основном, с запросами к серверным компонентам других компьютеров а серверные компоненты серверной ОС предоставляют эти услуги. Конечно, на данный момент, практически любая современная ОС способна выполнять как роль клиента, так и сервера. Серверные системы просто изначально созданы из расчета обслуживания ими максимального количества обращений и обладают лучшей отказоустойчивостью (надежностью).

Вот, к примеру, какая "игрушка" стоит у нас в серверной:


Но о ней - в другой раз:)

Давайте теперь с Вами поговорим вот о чем: современные (цифровые) технологии передачи сигнала связаны с его преобразованием (кодированием). Зачем нам это нужно? На то есть несколько причин:

  1. Предотвращение ошибок передачи данных (за счет уверенного распознавания сигнала принимающей стороной)
  2. Данные передаются быстрее (за счет более высокой плотности полезной информации в потоке)

Как видите, это - уже две весьма веские причины для того, чтобы уделить методам кодирования должное внимание:)

На фото ниже представлено два сигнала: аналоговый (красная линия) и цифровой (черные "ступеньки")


В данном случае аналоговая последовательность была оцифрована (дискретизирована) с определенной частотой. Чем выше будет частота дискритизации, тем меньший шаг будут иметь наши "ступеньки" и тем более похож будет оцифрованный сигнал на исходный (красный).

Похожие процессы происходят и при дискретизации (оцифровке) нашего голоса, снимаемого со входа микрофона .

В вычислительной технике используется двоичный код . Внутри компьютера это эквивалентно двум состояниям: наличию и отсутствию электрического напряжения (логический «ноль» или «единица»). Здесь - все просто: есть ток - "единица", нету - "ноль".

Современные технологии передачи данных позволяют производить кодирование сигнала и другими (более эффективными) способами. Но прежде, - еще одна небольшая классификация. По способу реализации процедура делится на:

  1. Физическое кодирование сигнала
  2. и - логическое (на более высоком уровне - поверх физического)

Давайте сначала обзорно рассмотрим первый пункт. Есть, к примеру, потенциальный способ кодирования , при котором единице соответствует один уровень напряжения (один потенциал), а нулю - другой. А при импульсном способе , для представления цифр используются импульсы разной полярности.

Для технологии кодирования определенная проблема при передаче данных состоит в том, что внешние (по отношению к самому компьютеру) линии передачи данных могут быть растянуты на большие расстояния и подвержены воздействию различных помех и наводок. Это приводит к искажению эталонных прямоугольных импульсов передачи сигнала и нужны новые (надежные) алгоритмы его кодирования и передачи.

В вычислительных сетях применяется как потенциальное , так и импульсное кодирование. Также применяется и такой способ передачи данных, как модуляция .

При модуляции дискретные данные передаются с помощью синусоидального сигнала той частоты, которую хорошо передает имеющаяся в распоряжении линия связи.


Первые два варианта преобразования применяются для линий высокого качества, а модуляция используется в каналах с сильными искажениями сигнала. Модуляция, к примеру, используется в глобальных сетях при передаче трафика через аналоговые телефонные каналы связи, которые были разработаны специально для передачи голоса (аналоговой составляющей) и поэтому плохо подходят для передачи цифровых импульсов.

На сам способ передачи оказывает влияние и такая вещь, как количество проводников (жил) в линиях связи. Для снижения их стоимости количество проводов, зачастую, снижается. При такой технологии передача данных осуществляется последовательно, а не параллельно (как это принято для линий связи внутри компьютера).

К способам кодирования на физическом уровне относятся такие алгоритмы, как NRZ (Non Return Zero), Манчестерский код (Manchester ), MLT-3 (Multi Level Transmission) и ряд других. Не вижу особого смысла останавливаться на них подробно, если будет интересно - Вы всегда сможете почитать о них в Интернете. Короче, я - отмазался! :)

Давайте пару слов скажем и о логическом кодировании. Как можно понять из названия, оно осуществляется по верху физического (накладываясь на него) и служит для обеспечения дополнительной надежности при передаче данных. Каким же образом?

Например: если характер передаваемого сигнала долгое время не изменяется (при передаче длинных последовательностей логических нулей или единиц) приемник может ошибиться при считывании очередного бита информации. Он просто не сможет разложить общий поток данных на отдельные составляющие и, как следствие, - правильно собрать в своем буфере из них исходную структуру.

Логическое кодирование (которому подвергается исходная последовательность данных) внедряет в длинные последовательности бит свои биты с противоположным значением, или - вообще заменяет их другими последовательностями. Кроме того, оно позволяет улучшить спектральные характеристики сигнала, в целом - упростить его расшифровку, а кроме того - передавать в общем потоке дополнительные служебные сигналы управления.

В основном, для логического преобразования применяются три технологии:

  1. вставка бит (bit stuffing)
  2. избыточное кодирование
  3. скремблирование

Также - не останавливаюсь отдельно (чтобы не занудить) :) основную идею Вы, надеюсь, уловили!

Коротко отчитаюсь следующим скриншотом:

На нем Вы можете видеть, как выглядит один и тот же сигнал, при наложении на него различных алгоритмов:

Технологии передачи данных имеют еще ряд проблем, с которыми приходится бороться. И одна из них - проблема взаимной синхронизации передатчика одного компьютера и приемника другого. Согласитесь, что сложно будет разобраться в потоке данных, если два устройства начнут генерировать его одновременно "навстречу" друг другу. Начнется бардак! :)

Проблема же синхронизации удаленных компьютеров может решаться разными способами: путем обмена специальными тактовыми синхроимпульсами или же - передачей служебных данных, не имеющих отношения к основному потоку информации. Один из стандартных приемов, служащий для повышения надежности передачи это - подсчет контрольной суммы каждого байта (блока байтов) и передача этого значения принимающей стороне.

Примечание: контрольная сумма это - некоторое значение, рассчитанное путем "наложения" на данные определённого алгоритма и используемое для проверки их целостности при передаче. Контрольные суммы могут использоваться для быстрого сравнения двух наборов данных на их идентичность. Отличающиеся данные будут иметь разные контрольные суммы..

Еще одна технология подтверждения целостности данных это - обмен между взаимодействующими устройствами служебными сигналами-квитанциями , подтверждающими правильность приема. Зачастую эта функция по умолчанию включается в сам протокол сетевого взаимодействия.

Технологии передачи данных подразумевают передачу информации от одного компьютера к другому - в обеих направлениях. Даже в том случае, когда нам кажется, что мы только принимаем данные (например - скачиваем музыку), то на самом деле - обмен идет в двух направлениях. Просто есть основной поток данных (который интересует нас - музыка) и вспомогательный (служебный), идущий в обратном направлении, образуемый квитанциями об успешной (или не успешной) передаче.

В зависимости от того, могут ли они передавать данные в обоих направлениях или нет, физические каналы делятся на несколько видов:

  • Дуплексный канал - обеспечивает одновременную передачу информации в обоих направлениях Дуплекс может состоять из двух независимых физических сред (один проводник на прием, второй - на передачу). Возможен и вариант, при котором одна среда используется для обеспечения дуплексного режима работы. В этом случае на клиентах применяются дополнительные алгоритмы выделения каждого потока данных из общего массива информации.
  • Полудуплексный канал - также обеспечивает передачу в обоих направлениях, но не одновременно, а - по очереди. Т.е. в течение определенного времени данные передаются в одном направлении, а затем - в обратном.
  • Симплексный канал - позволяет передавать информацию только в одном направлении. Дуплексный может состоять из двух симплексных каналов.

Ой, что-то много букв получилось:) Думаю, на сегодня - достаточно, будем продвигаться постепенно. В следующих статьях обязательно продолжим наше знакомство с , а пока что - до свидания, и - до следующих статей!

В завершение, посмотрите тематическое видео:

Большинство жителей современных городов ежедневно передают либо получают какие-либо данные. Это могут быть компьютерные файлы, телевизионная картинка, радиотрансляция — все, что представляет собой некую порцию полезной информации. Технологических методов передачи данных — огромное количество. При этом во многих сегментах информационных решений модернизация соответствующих каналов происходит невероятно динамичными темпами. На смену привычным технологиям, которые, казалось бы, вполне могут удовлетворять потребности человека, приходят новые, более совершенные. Совсем недавно выход в Сеть через сотовый телефон рассматривался почти как экзотика, но сегодня подобная опция знакома большинству людей. Современные скорости передачи файлов через интернет, измеряемые сотнями мегабит в секунду, казались чем-то фантастическим первым пользователям Всемирной сети. Посредством каких типов инфраструктур могут передаваться данные? Чем может быть обусловлен выбор того или иного канала?

Основные механизмы передачи данных

Понятие передачи данных может быть связано с разными технологическими явлениями. В общем случае оно связано с индустрией компьютерных коммуникаций. Передача данных в этом аспекте — это обмен файлами (отправка, получение), папками и иными реализациями машинного кода.

Рассматриваемый термин может коррелировать также с нецифровой сферой коммуникаций. Например, трансляция ТВ-сигнала, радио, работа телефонных линий - если речь не идет о современных высокотехнологичных инструментах - может осуществляться посредством аналоговых принципов. В этом случае передача данных представляет собой трансляцию электромагнитных сигналов посредством того или иного канала.

Промежуточное положение между двумя технологическими реализациями передачи данных - цифровой и аналоговой - может занимать мобильная связь. Дело в том, что некоторые из технологий соответствующих коммуникаций относятся к первому типу — например, GSM-связь, 3G или 4G-интернет, другие характеризуются меньшей компьютеризированностью, и потому могут считаться аналоговыми — например, голосовая связь в стандартах AMPS либо NTT.

Однако современный тренд развития коммуникационных технологий таков, что каналы передачи данных, какого бы типа информация не передавалась посредством них, активно «оцифровываются». В крупных российских городах с трудом можно найти телефонные линии, функционирующие по аналоговым стандартам. Технологии, подобные AMPS, постепенно теряют актуальность и заменяются более совершенными. Цифровым становится ТВ и радио. Таким образом, мы вправе рассматривать современные технологии передачи данных главным образом в цифровом контексте. Хотя исторический аспект задействования тех или иных решений, безусловно, будет весьма полезно исследовать.

Современные системы передачи данных можно классифицировать на 3 основные группы: реализуемые в компьютерных сетях, используемые в мобильных сетях, являющиеся основой для организации трансляций ТВ и радио. Рассмотрим их специфику подробнее.

Технологии передачи данных в компьютерных сетях

Основной предмет передачи данных в компьютерных сетях, как мы отметили выше, — совокупность файлов, папок и иных продуктов реализации машинного кода (например, массивов, стеков и т. д.). Современные цифровые коммуникации могут функционировать на базе самых разных стандартов. В числе самых распространенных — TCP-IP. Основной его принцип — в присвоении компьютеру уникального IP-адреса, который может использоваться в качестве главного ориентира при передаче данных.

Обмен файлами в современных цифровых сетях может осуществляться с помощью проводных технологий либо тех, в которых не предполагается задействование кабеля. Классификация соответствующих инфраструктур первого типа может осуществляться исходя из конкретной разновидности провода. В современных компьютерных сетях чаще всего используются:

Витые пары;

Оптоволоконные провода;

Коаксиальные кабели;

USB-кабели;

Телефонные провода.

Каждый из отмеченных типов кабелей имеет как преимущества, так и недостатки. Например, витая пара - дешевый, универсальный и простой в монтаже тип провода, однако значительно уступающий оптоволокну по пропускной способности (подробнее данный параметр мы рассмотрим чуть позже). USB-кабели наименее всего приспособлены к передаче данных в рамках компьютерных сетей, однако совместимы практически с любым современным компьютером — крайне редко можно встретить ПК, не оснащенный USB-портами. Коаксиальные кабели в достаточной мере защищены от помех и позволяют обеспечивать передачу данных на очень большие расстояния.

Характеристики компьютерных сетей передачи данных

Полезно будет изучить некоторые ключевые характеристики компьютерных сетей, в которых осуществляется обмен файлами. В числе важнейших параметров соответствующей инфраструктуры — пропускная способность. Данная характеристика позволяет оценить то, какими могут быть максимальные показатели скорости и объема передаваемых данных в сети. Собственно, оба указанных параметра также относятся к ключевым. Скорость передачи данных — это фактический показатель, отражающий то, какой объем файлов может направляться с одного компьютера на другой за установленный промежуток времени. Рассматриваемый параметр чаще всего выражается в битах в секунду (на практике, как правило, в кило-, мега-, гигабитах, в мощных сетях — в терабитах).

Классификация каналов передачи компьютерных данных

Обмен данными при задействовании компьютерной инфраструктуры может осуществляться посредством трех основных типов каналов: дуплексного, симплексного, а также полудуплексного. Канал первого типа предполагает, что устройство передачи данных на ПК одновременно может быть также и приемником. Симплексные девайсы, в свою очередь, способны только принимать сигналы. Полудуплексные устройства обеспечивают задействование функции приема и передачи файлов по очереди.

Беспроводная передача данных в компьютерных сетях осуществляется чаще всего через стандарты:

- «малого радиуса» (Bluetooth, ИК-порты);

- «среднего радиуса» - Wi-Fi;

- «большого радиуса» - 3G, 4G, WiMAX.

Скорость, с которой передаются файлы, может сильно разниться в зависимости от того или иного стандарта связи, равно как устойчивость соединения и защищенность его от помех. Одним из оптимальных решений для организации домашних внутрикорпоративных компьютерных сетей считается Wi-Fi. Если необходима передача данных на дальние расстояния — задействуются 3G, 4G, WiMax, либо иные конкурентные в отношении них технологии. Сохраняют востребованность Bluetooth, в меньшей степени — ИК-порты, поскольку их задействование практически не требует от пользователя тонкой настройки девайсов, посредством которых осуществляется обмен файлами.

Наибольшую популярность стандарты «малого радиуса» имеют в индустрии мобильных устройств. Так, передача данных на андроид с другой аналогичной ОС либо совместимой часто осуществляется как раз-таки с помощью Bluetooth. Однако мобильные устройства вполне успешно могут интегрироваться также и с компьютерными сетями, например с помощью Wi-Fi.

Компьютерная сеть передачи данных функционирует посредством задействования двух ресурсов — аппаратного обеспечения и необходимого ПО. И то и другое необходимо для организации полноценного обмена файлами между ПК. Программы для передачи данных могут задействоваться самые разные. Их можно условно классифицировать по такому критерию, как область применения.

Есть пользовательское ПО, адаптированное к использованию веб-ресурсов — к таким решениям относятся браузеры. Есть программы, задействуемые как инструмент голосового общения, дополненного возможностью организации видеочатов — например, Skype.

Есть ПО, относящееся к категории системного. Соответствующие решения могут практически не задействоваться пользователем, однако их функционирование может быть необходимо для обеспечения обмена файлами. Как правило, подобное ПО работает на уровне фоновых программ в структуре операционной системы. Данные виды ПО позволяют соединить ПК с сетевой инфраструктурой. На базе подобных подключений уже могут задействоваться пользовательские инструменты — браузеры, программы для организации видеочатов и т. д. Системные решения важны также и для обеспечения стабильности сетевых подключений между компьютерами.

Есть ПО, предназначенное для диагностики соединений. Так, если осуществить надежное подключение между ПК мешает та или иная ошибка передачи данных, то ее можно вычислить с помощью подходящей программы для диагностики. Задействование различных видов ПО — один из ключевых критериев разграничения цифровых и аналоговых технологий. При использовании инфраструктуры передачи данных традиционного типа программные решения имеют, как правило, несопоставимо меньший функционал, чем при выстраивании сетей на базе цифровых концепций.

Технологии передачи данных в сотовых сетях

Изучим теперь то, каким образом данные могут передаваться в других масштабных инфраструктурах — сотовых сетях. Рассматривая данный технологический сегмент, полезно будет как раз таки уделить внимание истории развития соответствующих решений. Дело в том, что стандарты, посредством которых осуществляется передача данных в сотовых сетях, развиваются очень динамично. Некоторые из рассмотренных нами выше решений, что задействуются в компьютерных сетях, сохраняют актуальность в течение многих десятилетий. Особенно явным образом это прослеживается на примере проводных технологий — коаксиальный кабель, витая пара, оптоволоконные провода были внедрены в практику компьютерных коммуникаций очень давно, но ресурс их задействования далек от исчерпания. В свою очередь, в мобильной индустрии едва ли не каждый год появляются новые концепции, которые с разной степенью интенсивности могут внедряться в практику.

Итак, эволюция технологий сотовой связи начинается с внедрения в начале 80-х годов самых ранних стандартов — таких как NMT. Можно отметить, что его возможности не ограничивались обеспечением голосовой связи. Передача данных через NMT-сети также была возможна, но при очень маленькой скорости - порядка 1,2 Кбит/сек.

Следующий шаг технологической эволюции на рынке сотовой связи был связан с внедрением стандарта GSM. Скорость передачи данных при его задействовании предполагалась гораздо более высокая, чем в случае использования NMT — порядка 9,6 Кбит/сек. Впоследствии стандарт GSM был дополнен технологией HSCSD, задействование которой позволило абонентам сотовой связи передавать данные со скоростью 57,6 Кбит/сек.

Позже появился стандарт GPRS, посредством которого стало возможно отделять типично «компьютерный» трафик, передаваемый в каналах сотовой связи, от голосового. Скорость передачи данных при задействовании GPRS могла достигать порядка 171,2 Кбит/сек. Следующим технологическим решением, внедренным мобильными операторами, стал стандарт EDGE. Он позволил обеспечивать передачу данных со скоростью 326 Кбит/сек.

Развитие интернета потребовало от разработчиков технологий сотовой связи внедрения решений, которые могли бы стать конкурентными проводным стандартам — прежде всего по скорости передачи данных, а также по устойчивости соединения. Значимым шагом вперед стало выведение на рынок стандарта UMTS. Данная технология позволила обеспечить обмен данными между абонентами сотового оператора на скорости до 2 Мбит/сек.

Позже появился стандарт HSDPA, при котором передача и прием файлов могли осуществляться на скорости до 14,4 Мбит/сек. Многие эксперты цифровой индустрии считают, что именно с момента внедрения технологии HSDPA сотовые операторы начали составлять прямую конкуренцию интернет-провайдерам, задействующим кабельные соединения.

В конце 2000 годов появился стандарт LTE и его конкурентные аналоги, посредством которых абоненты сотовых операторов получили возможность обмениваться файлами со скоростью в несколько сотен мегабит. Можно отметить, что подобные ресурсы даже для пользователей современных проводных каналов не всегда доступны. Большинство российских провайдеров передают своим абонентам в распоряжение канал передачи данных со скоростью, не превышающей 100 Мбит/сек, на практике — чаще всего в несколько раз меньшей.

Поколения сотовых технологий

Стандарт NMT, как правило, относится к поколению 1G. Технологии GPRS и EDGE часто классифицируются как 2G, HSDPA — как 3G, LTE — как 4G. Следует отметить, что у каждого из отмеченных решений есть конкурентные аналоги. Например, к таковым в отношении LTE некоторые специалисты относят WiMAX. Другие конкурентные в отношении LTE решения на рынке 4G-технологий — 1xEV-DO, IEEE 802.20. Есть точка зрения, по которой стандарт LTE все же не вполне корректно классифицировать как 4G, поскольку по максимальной скорости он немного не дотягивает до показателя, определенного в отношении концептуального 4G, который составляет 1 Гбит/сек. Таким образом, не исключено, что в скором времени на мировом рынке сотовой связи появится новый стандарт, возможно, еще более совершенный, чем 4G и способный обеспечивать передачу данных со столь впечатляющей скоростью. Пока же в числе тех решений, что внедряются наиболее динамично, — LTE. Ведущие российские операторы активно модернизируют соответствующую инфраструктуру по всей стране — обеспечение качественной передачи данных по стандарту 4G становится одним из ключевых конкурентных преимуществ на рынке сотовой связи.

Технологии трансляций телевидения

Цифровые концепции передачи данных могут быть задействованы также и в медиаиндустрии. Долгое время информационные технологии в организацию трансляций телевидения и радио внедрялись не слишком активно — главным образом, в силу ограниченной рентабельности соответствующих усовершенствований. Часто задействовались решения, сочетавшие в себе цифровые и аналоговые технологии. Так, в полной мере «компьютеризированной» могла быть инфраструктура телецентра. Однако для абонентов телевизионных сетей транслировались аналоговые передачи.

По мере распространения интернета и удешевления каналов компьютерной передачи данных игроки телевизионной и радиоиндустрии стали активно «оцифровывать» свою инфраструктуру, интегрировать ее с IT-решениями. В разных странах мира были утверждены стандарты телевизионного вещания в цифровом формате. Из них наиболее распространенными считаются DVB, адаптированный для европейского рынка, ATSC, используемый в США, ISDB, задействуемый в Японии.

Цифровые решения в радиоиндустрии

Информационные технологии также активно задействуются в радиоиндустрии. Можно отметить, что подобные решения характеризуются определенными преимуществами в сравнении с аналоговыми стандартами. Так, в цифровых радиотрансляциях может быть достигнуто существенно более высокое качество звука, чем при задействовании FM-каналов. Цифровая сеть передачи данных теоретически дает радиостанциям возможность отправки на радиоприемники абонентов не только голосового трафика, но также и любого другого медиаконтента — картинок, видео, текстов. Соответствующие решения могут быть внедрены в инфраструктуру организации цифровых телевизионных трансляций.

Спутниковые каналы передачи данных

В отдельную категорию следует выделить спутниковые каналы, посредством которых может осуществляться передача данных. Формально мы вправе отнести их к беспроводным, однако масштабы их задействования таковы, что объединять соответствующие решения в один класс с Wi-Fi и Bluetooth будет не вполне корректно. Спутниковые каналы передачи данных могут быть задействованы - на практике это так и происходит - при выстраивании практически любого типа инфраструктуры связи из тех, что перечислены нами выше.

Посредством «тарелок» можно организовывать объединение ПК в сети, подключать их к интернету, обеспечивать функционирование телевизионных и радиотрансляций, повышать уровень технологичности мобильных сервисов. Основное преимущество спутниковых каналов — всеохватность. Передача данных может быть осуществлена при их задействовании практически в любое место планеты — равно как и прием — с любой точки земного шара. Есть у спутниковых решений также некоторые технологические недостатки. Например, при передаче компьютерных файлов с помощью «тарелки» может возникать заметная задержка отклика, или «пинга» — временного промежутка между моментом отправки файла с одного ПК и получения его на другом.

Каждый человек постоянно сталкивается с информацией, притом так часто, что смысл самого понятия объяснить может не каждый. Информация - это сведения, которые передаются от одного лица другому при помощи различных средств связи.

Существуют различные способы передачи данных, о которых речь пойдет далее.

Каким образом передается информация

В процессе развития человечества происходит постоянное совершенствование механизмов, при помощи которых передаются сведения. Способы хранения и передачи информации довольно разнообразны, поскольку существует несколько систем, в которых происходит обмен данных.

В системе передачи данных различают 3 направления: это передача от человека к человеку, от человека к компьютеру и от компьютера к компьютеру.

  • Первоначально сведения получают при помощи органов чувств - зрения, слуха, обоняния, вкуса и осязания. Для передачи информации на ближнем расстоянии существует язык, который позволяет сообщить полученные сведения другому человеку. Кроме того, передать что-либо другому человеку можно, написав письмо либо в процессе спектакля, а также при разговоре по телефону. Несмотря на то, что в последнем примере используется средство связи, то есть промежуточное устройство, оно позволяет передать сведения в непосредственном контакте.
  • Для передачи данных от человека к компьютеру необходимо введение ее в память устройства. Информация может иметь разный вид, о чем будет идти разговор далее.
  • Передача от компьютера к компьютеру происходит посредством промежуточных устройств (флеш-карты, интернета, диска и т. д.).

Обработка информации

После получения необходимых сведений возникает необходимость их хранения и передачи. Способы передачи и обработки информации наглядно представляют этапы развития человечества.

  • В начале своего развития обработка данных представляла собой перенесение их на бумагу при помощи чернил, пера, ручки т. д. Однако недостаток такого способа обработки заключался в ненадежности хранения. Если упоминать способы хранения и передачи информации, хранение на бумаге имеет определенный срок, который определяется сроком службы бумаги, а также условиями ее эксплуатации.
  • Следующим этапом является механическая информационная технология, при которой используется печатная машинка, телефон, диктофон.
  • Далее на смену механической системе обработки сведений пришла электрическая, ведь способы передачи информации постоянно совершенствуются. К таким средствам относят электрические пишущие машинки, портативные диктофоны, копировальные машинки.

Виды информации

Виды и способы передачи информации отличаются в зависимости от ее содержания. Это могут быть текстовые сведения, представляемые в устной и письменной форме, а также символьные, музыкальные и графические. К современным видам данных относят также видеоинформацию.

С каждой из этих форм хранения информации человек имеет дело каждый день.

Средства передачи информации

Средства передачи информации могут быть устными и письменными.

  • К устным средствам относят выступления, собрания, презентации, доклады. При использовании этого метода можно рассчитывать на быструю реакцию оппонента. Использование дополнительных невербальных средств в процессе разговора способно усилить эффект от речи. К таким средствам относят мимику, жесты. Однако в то же время информация, получаемая в устном виде, не имеет долгосрочного действия.
  • Письменные средства информации - это статьи, отчеты, письма, записки, распечатки и т. д. При этом не приходится рассчитывать на быструю реакцию публики. Однако преимуществом является то, что полученную информацию можно перечитать, усвоив тем самым информацию.

Способы представления информации

Как известно, информация может быть представлена в нескольких формах, что, однако, не меняет ее содержания. Например, дом можно представить как слово или графическое отображение.

Способы представления и передачи информации можно изобразить в виде следующего списка:

  • Текстовая информация. Позволяет наиболее полно предоставить информацию, однако может содержать большой объем данных, что способствует плохому ее усвоению.
  • Графическое изображение - это график, схема, диаграмма, гистограмма, кластер и т. д. Они позволяют кратко представить информацию, установить логические связи, причинно-следственные отношения. Кроме того, информация в графическом виде позволяет найти решения различных вопросов.
  • Презентация является красочным наглядным примером способа представления информации. В ней могут сочетаться как текстовые данные, так и графическое их отображение, то есть различные виды представления информации.

Понятие о коммуникации

Коммуникацией называют систему взаимодействия между несколькими объектами. В обобщенном смысле это и есть передача информации от одного объекта другому. Коммуникации являются залогом успешной деятельности организации.

Способы передачи информации (коммуникации) выполняют следующие функции: организационную, интерактивную, экспрессивную, побудительную, перцептивную.

Организационная функция обеспечивает между сотрудниками систему отношений; интерактивная позволяет формировать настроение окружающих; экспрессивная окрашивает настроение окружающих; побудительная призывает к действию; перцептивная позволяет различным собеседникам понимать друг друга.

Современные способы передачи информации

К наиболее современным способам передачи информации относят следующие.

В интернете содержится огромное количество информации. Это позволяет черпать для себя массу знаний, не утруждаясь изучением книг и других бумажных источников. Однако, помимо этого, он содержит способы и средства передачи информации, аналогичные исторически более давним моделям. Это аналог традиционной почты - электронная почта, или e-mail. Удобство использования этого вида почты заключается в скорости передачи письма, исключении этапности доставки. На сегодняшний день практически каждый имеет электронный адрес, и связь со многими организациями поддерживается именно посредством этого способа передачи информации.

GSM-стандарт цифровой сотовой связи, который широко применяется повсеместно. При этом происходит кодирование устной речи и передача ее через преобразователь другому абоненту. Вся необходимая информация размещается в sim-карте, которая вставляется в мобильное устройство. На сегодняшний день наличие данного средства связи является необходимостью в качестве средства коммуникации.

WAP позволяет просматривать на экране мобильного телефона web-страницы с информацией в любом ее виде: текстовом, числовом, символьном, графическом. Изображение на экране может быть адаптировано под экран мобильного телефона либо иметь вид, аналогичный компьютерному изображению.

Способы передачи информации современного типа включают также GPRS, который позволяет осуществлять пакетную передачу данных на мобильное устройство. Благодаря этому средству связи возможно беспрерывное использование пакетными данными одновременно большим количеством человек одновременно. Среди свойств GPRS можно назвать высокую скорость передачи данных, оплату только за переданную информацию, большие возможности использования, параметры совместимости с другими сетями.

Интернет посредством использования модема позволяет получить высокую скорость передачи информации при низкой стоимости такого доступа. Большое количество интернет-провайдеров создает высокий уровень конкуренции между ними.

Спутниковая связь позволяет получить доступ в интернет посредством спутника. Преимуществом такого способа является низкая стоимость, высокая скорость передачи данных, однако среди недостатков есть ощутимый - это зависимость сигнала от погодных условий.

Возможности использования средств передачи информации

По мере появления новых средств передачи информации возникают возможности нетрадиционного использования различных устройств. Например, возможность видеоконференции и видеозвонка вызвала идею использовать оптические устройства в медицине. Таким образом происходит получение информации о патологическом органе при непосредственном наблюдении во время операции. При использовании такого способа получения информации нет необходимости делать большой разрез, проведение операции возможно при минимальном повреждении кожи.

Линия связи состоит в общем случае из физической среды, по которой передаются электрические информационные сигналы, аппаратуры передачи дан­ных и промежуточной аппаратуры. Синонимом термина линия связи (line) являет­ся термин канал связи (channel).

Физическая среда передачи данных может представлять собой кабель, то есть набор проводов, изоляционных и защитных оболочек и соединительных разъемов, а также земную атмосферу или космическое пространство, через кото­рые распространяются электромагнитные волны.

В зависимости от среды передачи данных линии связи разделяются на следую­щие:

§ проводные (воздушные);

§ кабельные (медные и волоконно-оптические);

§ радиоканалы наземной и спутниковой связи.

Проводные (воздушные) линии связи представляют собой провода без каких-либо изолирующих или экранирующих оплеток, проложенные между столбами и вися­щие в воздухе. По таким линиям связи традиционно передаются телефонные или телеграфные сигналы, но при отсутствии других возможностей эти линии исполь­зуются и для передачи компьютерных данных. Скоростные качества и помехоза­щищенность этих линий оставляют желать много лучшего. Сегодня проводные линии связи быстро вытесняются кабельными.

Кабельные линии представляют собой достаточно сложную конструкцию. Кабель состоит из проводников, заключенных в несколько слоев изоляции: электрической, электромагнитной, механической, а также, возможно, климатической. Кроме того, кабель может быть оснащен разъемами, позволяющими быстро выполнять присоединение к нему различного оборудования. В компьютерных сетях применяются три основных типа кабеля: кабели на основе скрученных пар медных проводов, коак­сиальные кабели с медной жилой, а также волоконно-оптические кабели.

Скрученная пара проводов называется витой парой. Витая пара существует в экранированном варианте, когда пара мед­ных проводов обертывается в изоляционный экран, и неэкранированном, когда изоляционная обертка отсутствует. Скручивание проводов снижает влияние внешних помех на полезные сигналы, передаваемые по кабелю.

Коаксиальный кабель имеет несимметричную конструкцию и состоит из внутренней медной жилы и оплетки, отделенной от жилы слоем изоляции. Суще­ствует несколько типов коаксиального кабеля, отличающихся характеристиками и областями применения - для локальных сетей, для глобальных сетей, для кабельно­го телевидения и т. п.

Волоконно-оптический кабель состоит из тонких волокон, по которым распространяются световые сигналы. Это наиболее качественный тип кабеля - он обеспечивает передачу данных с очень высокой скоростью (до 10 Гбит/с и выше) и лучше других типов передающей среды обеспечивает защиту данных от внешних помех.


Радиоканалы наземной и спутниковой связи образуются с помощью передатчика и приемника радиоволн. Существует большое количество различных типов радио­каналов, отличающихся как используемым частотным диапазоном, так и дальностью канала. Диапазоны коротких, средних и длинных волн (KB, СВ и ДВ), называемые также диапазонами амплитудной модуляции (Amplitude Modulation, AM) по типу используемого в них метода модуляции сигнала, обеспечивают дальнюю связь, но при невысокой скорости передачи данных. Более скоростными являются каналы, работающие на диапазонах ультракоротких волн (УКВ), для которых характерна частотная модуляция, а также диапазонах сверхвысо­ких частот (СВЧ или microwaves).

В диапазоне СВЧ (свыше 4 ГГц) сигналы уже не отражаются ионосферой Земли и для устойчивой связи требуется наличие прямой видимости между передатчиком и приемником. Поэтому такие частоты использу­ют либо спутниковые каналы, либо радиорелейные каналы, где это условие выпол­няется.

В компьютерных сетях сегодня применяются практически все описанные типы физических сред передачи данных, но наиболее перспективными являются воло­конно-оптические. На них сегодня строятся как магистрали крупных территори­альных сетей, так и высокоскоростные линии связи локальных сетей.

Популярной средой является также витая пара, которая характеризуется отличным соотноше­нием качества к стоимости, а также простотой монтажа. С помощью витой пары обычно подключают конечных абонентов сетей на расстояниях до 100 метров от концентратора. Спутниковые каналы и радиосвязь используются чаще всего в тех случаях, когда кабельные связи применить нельзя - например, при прохождении канала через малонаселенную местность или же для связи с мобильным пользова­телем сети.

Даже при рассмотрении простейшей сети, состоящей всего из двух машин, можно увидеть многие проблемы, присущие любой вычислительной сети, в том числе проблемы, связанные с физической передачей сигналов по линиям связи , без решения которой невозможен любой вид связи.

В вычислительной технике для представления данных используется двоичный код . Внутри компьютера единицам и нулям данных соответствуют дискретные электрические сигналы. Представление данных в виде электрических или оптических сигналов называется кодированием. Существуют различные способы кодирования двоичных цифр 1 и 0, например, потенциальный способ, при котором единице соответствует один уровень напряжения, а нулю - другой, или импульсный способ, когда для представления цифр используются импульсы различной или одной полярности.

Аналогичные подходы могут быть использованы для кодирования данных и при передаче их между двумя компьютерами по линиям связи. Однако эти линии связи отличаются по своим электрическим характеристикам от тех, которые существуют внутри компьютера. Главное отличие внешних линий связи от внутренних состоит в их гораздо большей протяженности , а также в том, что они проходят вне экранированного корпуса по пространствам, зачастую подверженным воздействию сильных электромагнитных помех. Все это приводит к значительно большим искажениям прямоугольных импульсов (например, «заваливанию» фронтов), чем внутри компьютера. Поэтому для надежного распознавания импульсов на приемном конце линии связи при передаче данных внутри и вне компьютера не всегда можно использовать одни и те же скорости и способы кодирования. Например, медленное нарастание фронта импульса из-за высокой емкостной нагрузки линии требует передачи импульсов с меньшей скоростью (чтобы передний и задний фронты соседних импульсов не перекрывались и импульс успел дорасти до требуемого уровня).

В вычислительных сетях применяют как потенциальное, так и импульсное кодирование дискретных данных , а также специфический способ представления данных, который никогда не используется внутри компьютера, - модуляцию (рис. 3). При модуляции дискретная информация представляется синусоидальным сигналом той частоты, которую хорошо передает имеющаяся линия связи.

Потенциальное или импульсное кодирование применяется на каналах высокого качества, а модуляция на основе синусоидальных сигналов предпочтительнее в том случае, когда канал вносит сильные искажения в передаваемые сигналы. Обычно модуляция используется в глобальных сетях при передаче данных через аналоговые телефонные каналы связи, которые были разработаны для передачи голоса в аналоговой форме и поэтому плохо подходят для непосредственной передачи импульсов.

Для преобразования данных из одного вида в другой используются модемы. Термин «модем» - сокращение от слов модулятор/демодулятор. Двоичный ноль преобразуется, например, им в сигнал низкой, а единица - высокой частоты. Другими словами, преобразуя данные, модем модулирует частоту аналогового сигнала (рис. 4).

На способ передачи сигналом влияет и количество проводов в линиях связи между компьютерами.

Передача данных может происходить происходит параллельно (рис. 5) или последовательно (рис. 6).

Для сокращения стоимости линий связи в сетях обычно стремятся к сокращению количества проводов и из-за этого используют не параллельную передачу всех бит одного байта или даже нескольких байт, как это делается внутри компьютера, а последовательную, побитную передачу, требующую всего одной пары проводов.

При соединении компьютеров и устройств используются также три различных метода, обозначаемые тремя различными терминами. Соединение бывает: симплексное, полудуп­лексное и дуплексное (рис. 7).

О симплексном соединении говорят, когда данные перемещаются лишь в одном направлении. Полудуплексное соединение позво­ляет данным перемещаться в обоих направлениях, но в разное время, и, наконец, дуплексное соединение, это когда данные следуют в обоих направлениях одновременно.

Рис. 7. Примеры потоков данных.

Другим важным понятием является переключение (коммутация) соединения.

Любые сети связи поддерживают некоторый способ коммутации своих абонентов между собой. Этими абонентами могут быть удаленные компьютеры, локальные сети, факс-аппараты или просто собеседники, общающиеся с помощью телефон­ных аппаратов. Практически невозможно предоставить каждой паре взаимодействующих абонентов свою собственную некоммутируемую (т.е. постоянное соединение) физическую линию связи, которой они могли бы монопольно «владеть» в течение длительного времени. По­этому в любой сети всегда применяется какой-либо способ коммутации абонентов, который обеспечивает доступность имеющихся физических каналов одновременно для нескольких сеансов связи между абонентами сети.

Переключение соединения позволяет аппаратным средствам сети разделять один и тот же физический канал связи между многими устройствами. Два основных способа переключения соединения - пере­ключение цепей и переключение пакетов.

Переключение цепей создает единое непрерывное соединение между двумя сетевыми устройствами. Пока эти устройства взаимодействуют, ни одно другое не сможет воспользоваться этим соединением для передачи собственной инфор­мации - оно вынуждено ждать, пока соединение не освободится.

Простой пример переключателя цепей - переключатель типа А-В, служащий, чтобы два компьютера соединить с одним принтером. Чтобы один из компьюте­ров мог печатать, вы поворачиваете тумблер на переключателе, устанавливая непрерывное соединение между компьютером и принтером. Образуется соеди­нение типа «точка-точка». Как изображено на рисунке, только один компьютер может печатать в одно и то же время.

Рис. 6Переключение цепей

Большинство современных сетей, включая Интернет, используют переключение пакетов. Программы передачи данных в таких сетях делят данные на кусочки, называе­мые пакетами. В сети пакетной коммутации данные могут следовать одновременно одним пакетом, а могут - в нескольких. Данные прибудут в одно и тоже место назначения, несмотря на то, что пути, которыми они следовали, могут быть совершенно различны.

Для сравнения двух видов соединения в сети, предположим, что мы прервали канал в каждом их них. Например, отключив принтер от менеджера на рис. 6 (переставив тумблер в положение В), вы лишили его возможности печатать. Соединение с переключением цепей требует наличия непрерывного канала связи.

Рис. 7. Переключение пакетов

Наоборот, данные в сети с переключением пакетов могут двигаться различными путями. Это видно на рис. 7. Данные необязательно следуют одной дорогой на пути между офисным и домашним компьютерами, разрыв одного из каналов не приведет к потере соединения - данные просто пойдут другим маршрутом. Сети с переключением пакетов имеют множество альтернативных маршрутов для пакетов.

Коммутация пакетов - это техника коммутации абонентов, которая была специ­ально разработана для эффективной передачи компьютерного трафика.

Суть проблемы заключается в пульсирующем ха­рактере трафика , который генерируют типичные сетевые приложения. Например, при обращении к удаленному файловому серверу пользователь сначала просмат­ривает содержимое каталога этого сервера, что порождает передачу небольшого объема данных. Затем он открывает требуемый файл в текстовом редакторе, и эта операция может создать достаточно интенсивный обмен данными, особенно если файл содержит объемные графические включения. После отображения нескольких страниц файла пользователь некоторое время работает с ними локально, что вооб­ще не требует передачи данных по сети, а затем возвращает модифицированные копии страниц на сервер - и это снова порождает интенсивную передачу данных по сети.

Коэффициент пульсации трафика отдельного пользователя сети, равный отно­шению средней интенсивности обмена данными к максимально возможной, может составлять 1:50 или 1:100. Если для описанной сессии организовать коммутацию канала между компьютером пользователя и сервером, то большую часть времени канал будет простаивать. В то же время коммутационные возможности сети будут использоваться и будут недоступны другим пользователям сети.

При коммутации пакетов все передаваемые пользователем сети сообщения раз­биваются в исходном узле на сравнительно небольшие части, называемые пакета­ми. Сообщением называется логически завершенная порция данных - запрос на передачу файла, ответ на этот запрос, содержащий весь файл, и т. п.

Сообщения могут иметь произвольную длину, от нескольких байт до многих мега­байт. Напротив, пакеты обычно тоже могут иметь переменную длину, но в узких пределах, например от 46 до 1500 байт. Каждый пакет снабжается заголовком, в котором указывается адресная информация, необходимая для доставки пакета узлу назначения, а также номер пакета, который будет использоваться узлом назначения для сборки сообщения.

Пакеты транспортируются в сети как независи­мые информационные блоки. Коммутаторы сети принимают пакеты от конечных узлов и на основании адресной информации передают их друг другу, а в конечном итоге - узлу назначения.

Коммутаторы пакетной сети отличаются от коммутаторов каналов тем, что они имеют внутреннюю буферную память для временного хранения пакетов, если выходной порт коммутатора в момент принятия пакета занят передачей другого пакета. В этом случае пакет находится некоторое время в очереди пакетов буферной памяти выходного порта, а когда до него дойдет очередь, то он передается следующему коммутатору. Такая схема передачи данных позволяет сглаживать пульсации трафика на магистральных связях между коммутаторами и тем самым использовать их наиболее эффективным образом для повышения пропускной способности сети в целом.

Действительно, для пары абонентов наиболее эффективным было бы предоставление им в единоличное пользование скоммутированного канала связи, как это дается в сетях с коммутацией каналов. При этом способе время взаимодействия пары абонентов было бы минимальным, так как данные без задержек передавались бы от одного абонента другому.

Сеть с коммутацией пакетов замедляет процесс взаимодействия конкретной пары абонентов. Тем не менее, общий объем передаваемых сетью компьютерных данных в едини­цу времени при технике коммутации пакетов будет выше, чем при технике ком­мутации каналов.

Обычно при равенстве предоставляемой скоро­сти доступа сеть с коммутацией пакетов оказывается в 2-3 раза дешевле, чем сеть с коммутацией каналов, то есть публичная телефонная сеть.

Каждая из этих схем (коммутация каналов (circuit switching) или коммутация пакетов (packet switching)) имеет свои преимущества и недостатки, но по долгосроч­ным прогнозам многих специалистов будущее принадлежит технологии коммута­ции пакетов, как более гибкой и универсальной.

Сети с коммутацией каналов хорошо приспособлены для коммутации данных с постоянной скоростью, когда единицей коммутации является не отдельный байт или пакет данных, а долговременный синхронный поток данных между двумя абонентами.

Как сети с коммутацией пакетов, так и сети с коммутацией каналов можно разделить на два класса по другому признаку - на сети с динамической коммутацией и сети с постоянной коммутацией.

В первом случае сеть разрешает устанавливать соединение по инициативе пользователя сети. Коммутация выполняется на время сеанса связи, а затем (опять же по инициативе одного из взаимодействующих пользователей) связь разрывается. В общем случае любой пользователь сети может соединиться с любым другим пользователем сети. Обычно период соединения между парой пользователей при динамической коммутации составляет от нескольких секунд до нескольких часов и завершается при выполнении определенной работы - передачи файла, просмотра страницы текста или изображения и т. п.

Во втором случае сеть не предоставляет пользователю возможность выполнить динамическую коммутацию с другим произвольным пользователем сети. Вместо этого сеть разрешает паре пользователей заказать соединение на длительный период[ времени. Соединение устанавливается не пользователями, а персоналом, обслуживающим сеть. Время, на которое устанавливается постоянная коммутация, меряется обычно несколькими месяцами. Режим постоянной коммутации в сетях с коммутацией каналов часто называется сервисом выделенных (dedicated) или арендуемых (leased) каналов.

Примерами сетей, поддерживающих режим динамической коммутации, являются телефонные сети общего пользования, локальные сети, сеть Internet.

Некоторые типы сетей поддерживают оба режима работы.

Еще одной проблемой, которую нужно решать при передаче сигналов, является проблема взаимной синхронизации передатчика одного компьютера с приемником другого . При организации взаимодействия модулей внутри компьютера эта проблема решается очень просто, так как в этом случае все модули синхронизируются от общего тактового генератора. Проблема синхронизации при связи компьютеров может решаться разными способами, как с помощью обмена специальными тактовыми синхроимпульсами по отдельной линии, так и с помощью периодической синхронизации заранее обусловленными кодами или импульсами характерной формы, отличающейся от формы импульсов данных.

Асинхронная и синхронная передачи. При обмене данными на физическом уровне единицей информации является бит, поэтому средства физического уровня всегда поддерживают побитовую синхрони­зацию между приемником и передатчиком.

Однако при плохом качестве линии связи (обычно это относится к телефонным коммутируемым каналам) для удешевления аппаратуры и повышения надежности передачи данных вводят дополнительные средства синх­ронизации на уровне байт.

Такой режим работы называется асинхронным или старт-стопным. Другой причиной использования такого режима работы является наличие устройств, ко­торые генерируют байты данных в случайные моменты времени. Так работает кла­виатура дисплея или другого терминального устройства, с которого человек вводит данные для обработки их компьютером.

В асинхронном режиме каждый байт данных сопровождается специальными сиг­налами «старт» и «стоп». Назначение этих сигналов состоит в том, чтобы, во-первых, известить приемник о приходе данных и, во-вторых, чтобы дать приемнику достаточно времени для выполнения некоторых функций, связанных с синхронизацией, до поступления следующего байта..

Асинхронным описанный режим называется потому, что каждый байт может быть несколько смещен во времени относительно побитовых тактов предыдущего байта

Задачи надежного обмена двоичными сигналами, представленными соответствующими электромагнитными сигналами, в вычислительных сетях решает определенный класс оборудования. В локальных сетях это сетевые адаптеры, а в глобальных сетях - аппаратура передачи данных, к которой относятся, например, рассмотренные модемы. Это оборудование кодирует и декодирует каждый информационный бит, синхронизирует передачу электромагнитных сигналов по линиям связи, проверяет правильность передачи по контрольной сумме и может выполнять некоторые другие операции.

Контрольные вопросы:

3. Какие линии связи используются в компьютерных сетях?

4. Какие линии связи являются наиболее перспективными?

5. Как передаются двоичные сигналы в сети? Что такое модуляция?

6. Для чего используется модем?

7. Что такое последовательная и параллельная передача данных?

8. Что такое симплексное, полудуп­лексное и дуплексное соединение?

9. Что такое коммутация соединения?

10. Какие существуют два основных способа коммутации соединения?

11. Что такое пакетная коммутация и в чем ее преимущество?

12. Когда целесообразно использовать коммутацию каналов?

13. Поясните понятия асинхронной и синхронной передачи данных?