Разработка нейронных сетей. Что такое микрофон XLR и почему он вам нужен? Что такое нейронная сеть


Искусственный интеллект, нейронные сети, машинное обучение — что на самом деле означают все эти нынче популярные понятия? Для большинства непосвященных людей, коим и являюсь я сам, они всегда казались чем-то фантастическим, но на самом деле суть их лежит на поверхности. У меня давно созревала идея написать простым языком об искусственных нейронных сетях. Узнать самому и рассказать другим, что представляют собой эта технология, как она работают, рассмотреть ее историю и перспективы. В этой статье я постарался не залезать в дебри, а просто и популярно рассказать об этом перспективном направление в мире высоких технологий.


Искусственный интеллект, нейронные сети, машинное обучение - что на самом деле означают все эти нынче популярные понятия? Для большинства непосвященных людей, коим являюсь и я сам, они всегда казались чем-то фантастическим, но на самом деле суть их лежит на поверхности. У меня давно созревала идея написать простым языком об искусственных нейронных сетях. Узнать самому и рассказать другим, что представляет собой эта технология, как она работает, рассмотреть ее историю и перспективы. В этой статье я постарался не залезать в дебри, а просто и популярно рассказать об этом перспективном направление в мире высоких технологий.

Немного истории

Впервые понятие искусственных нейронных сетей (ИНС) возникло при попытке смоделировать процессы головного мозга. Первым серьезным прорывом в этой сфере можно считать создание модели нейронных сетей МакКаллока-Питтса в 1943 году. Учеными впервые была разработана модель искусственного нейрона. Ими также была предложена конструкция сети из этих элементов для выполнения логических операций. Но самое главное, учеными было доказано, что подобная сеть способна обучаться.

Следующим важным шагом стала разработка Дональдом Хеббом первого алгоритма вычисления ИНС в 1949 году, который стал основополагающем на несколько последующих десятилетий. В 1958 году Фрэнком Розенблаттом был разработан парцептрон - система, имитирующая процессы головного мозга. В свое время технология не имела аналогов и до сих пор является основополагающей в нейронных сетях. В 1986 году практически одновременно, независимо друг от друга американскими и советскими учеными был существенно доработан основополагающий метод обучения многослойного перцептрона . В 2007 году нейронные сети перенесли второе рождение. Британский информатик Джеффри Хинтоном впервые разработал алгоритм глубокого обучения многослойных нейронных сетей, который сейчас, например, используется для работы беспилотных автомобилей.

Коротко о главном

В общем смысле слова, нейронные сети - это математические модели, работающие по принципу сетей нервных клеток животного организма. ИНС могут быть реализованы как в программируемые, так и в аппаратные решения. Для простоты восприятия нейрон можно представить, как некую ячейку, у которой имеется множество входных отверстий и одно выходное. Каким образом многочисленные входящие сигналы формируются в выходящий, как раз и определяет алгоритм вычисления. На каждый вход нейрона подаются действенные значения, которые затем распространяются по межнейронным связям (синопсисам). У синапсов есть один параметр - вес, благодаря которому входная информация изменяется при переходе от одного нейрона к другому. Легче всего принцип работы нейросетей можно представить на примере смешения цветов. Синий, зеленый и красный нейрон имеют разные веса. Информация того нейрона, вес которого больше будет доминирующей в следующем нейроне.

Сама нейросеть представляет собой систему из множества таких нейронов (процессоров). По отдельности эти процессоры достаточно просты (намного проще, чем процессор персонального компьютера), но будучи соединенными в большую систему нейроны способны выполнять очень сложные задачи.

В зависимости от области применения нейросеть можно трактовать по-разному, Например, с точки зрения машинного обучения ИНС представляет собой метод распознавания образов. С математической точки зрения - это многопараметрическая задача. С точки зрения кибернетики - модель адаптивного управления робототехникой. Для искусственного интеллекта ИНС - это основополагающее составляющее для моделирования естественного интеллекта с помощью вычислительных алгоритмов.

Основным преимуществом нейросетей над обычными алгоритмами вычисления является их возможность обучения. В общем смысле слова обучение заключается в нахождении верных коэффициентов связи между нейронами, а также в обобщении данных и выявлении сложных зависимостей между входными и выходными сигналами. Фактически, удачное обучение нейросети означает, что система будет способна выявить верный результат на основании данных, отсутствующих в обучающей выборке.

Сегодняшнее положение

И какой бы многообещающей не была бы эта технология, пока что ИНС еще очень далеки от возможностей человеческого мозга и мышления. Тем не менее, уже сейчас нейросети применяются во многих сферах деятельности человека. Пока что они не способны принимать высокоинтеллектуальные решения, но в состоянии заменить человека там, где раньше он был необходим. Среди многочисленных областей применения ИНС можно отметить: создание самообучающихся систем производственных процессов, беспилотные транспортные средства, системы распознавания изображений, интеллектуальные охранные системы, робототехника, системы мониторинга качества, голосовые интерфейсы взаимодействия, системы аналитики и многое другое. Такое широкое распространение нейросетей помимо прочего обусловлено появлением различных способов ускорения обучения ИНС.

На сегодняшний день рынок нейронных сетей огромен - это миллиарды и миллиарды долларов. Как показывает практика, большинство технологий нейросетей по всему миру мало отличаются друг от друга. Однако применение нейросетей - это очень затратное занятие, которое в большинстве случаев могут позволить себе только крупные компании. Для разработки, обучения и тестирования нейронных сетей требуются большие вычислительные мощности, очевидно, что этого в достатке имеется у крупных игроков на рынке ИТ. Среди основных компаний, ведущих разработки в этой области можно отметить подразделение Google DeepMind, подразделение Microsoft Research, компании IBM, Facebook и Baidu.

Конечно, все это хорошо: нейросети развиваются, рынок растет, но пока что главная задача так и не решена. Человечеству не удалось создать технологию, хотя бы приближенную по возможностям к человеческому мозгу. Давайте рассмотрим основные различия между человеческим мозгом и искусственными нейросетями.

Почему нейросети еще далеки до человеческого мозга?

Самым главным отличием, которое в корне меняет принцип и эффективность работы системы - это разная передача сигналов в искусственных нейронных сетях и в биологической сети нейронов. Дело в том, что в ИНС нейроны передают значения, которые являются действительными значениями, то есть числами. В человеческом мозге осуществляется передача импульсов с фиксированной амплитудой, причем эти импульсы практически мгновенные. Отсюда вытекает целый ряд преимуществ человеческой сети нейронов.

Во-первых, линии связи в мозге намного эффективнее и экономичнее, чем в ИНС. Во-вторых, импульсная схема обеспечивает простоту реализации технологии: достаточно использование аналоговых схем вместо сложных вычислительных механизмов. В конечном счете, импульсные сети защищены от звуковых помех. Действенные числа подвержены влиянию шумов, в результате чего повышается вероятность возникновения ошибки.

Итог

Безусловно, в последнее десятилетие произошел настоящий бум развития нейронных сетей. В первую очередь это связано с тем, что процесс обучения ИНС стал намного быстрее и проще. Также стали активно разрабатываться так называемые «предобученные» нейросети, которые позволяют существенно ускорить процесс внедрения технологии. И если пока что рано говорить о том, смогут ли когда-то нейросети полностью воспроизвести возможности человеческого мозга, вероятность того, что в ближайшее десятилетие ИНС смогут заменить человека на четверти существующих профессий все больше становится похожим на правду.

Для тех, кто хочет знать больше

  • Большая нейронная война: что на самом деле затевает Google
  • Как когнитивные компьютеры могут изменить наше будущее

В первой половине 2016 года мир услышал о множестве разработок в области нейронных сетей - свои алгоритмы демонстрировали Google (сеть-игрок в го AlphaGo), Microsoft (ряд сервисов для идентификации изображений), стартапы MSQRD, Prisma и другие.

В закладки

Редакция сайт рассказывает, что из себя представляют нейронные сети, для чего они нужны, почему захватили планету именно сейчас, а не годами раньше или позже, сколько на них можно заработать и кто является основными игроками рынка. Своими мнениями также поделились эксперты из МФТИ, «Яндекса», Mail.Ru Group и Microsoft.

Что собой представляют нейронные сети и какие задачи они могут решать

Нейронные сети - одно из направлений в разработке систем искусственного интеллекта. Идея заключается в том, чтобы максимально близко смоделировать работу человеческой нервной системы - а именно, её способности к обучению и исправлению ошибок. В этом состоит главная особенность любой нейронной сети - она способна самостоятельно обучаться и действовать на основании предыдущего опыта, с каждым разом делая всё меньше ошибок.

Нейросеть имитирует не только деятельность, но и структуру нервной системы человека. Такая сеть состоит из большого числа отдельных вычислительных элементов («нейронов»). В большинстве случаев каждый «нейрон» относится к определённому слою сети. Входные данные последовательно проходят обработку на всех слоях сети. Параметры каждого «нейрона» могут изменяться в зависимости от результатов, полученных на предыдущих наборах входных данных, изменяя таким образом и порядок работы всей системы.

Руководитель направления «Поиск Mail.ru» в Mail.Ru Group Андрей Калинин отмечает, что нейронные сети способны решать такие же задачи, как и другие алгоритмы машинного обучения, разница заключается лишь в подходе к обучению.

Все задачи, которые могут решать нейронные сети, так или иначе связаны с обучением. Среди основных областей применения нейронных сетей - прогнозирование, принятие решений, распознавание образов, оптимизация, анализ данных.

Директор программ технологического сотрудничества Microsoft в России Влад Шершульский замечает, что сейчас нейросети применяются повсеместно: «Например, многие крупные интернет-сайты используют их, чтобы сделать реакцию на поведение пользователей более естественной и полезной своей аудитории. Нейросети лежат в основе большинства современных систем распознавания и синтеза речи, а также распознавания и обработки изображений. Они применяются в некоторых системах навигации, будь то промышленные роботы или беспилотные автомобили. Алгоритмы на основе нейросетей защищают информационные системы от атак злоумышленников и помогают выявлять незаконный контент в сети».

В ближайшей перспективе (5-10 лет), полагает Шершульский, нейронные сети будут использоваться ещё шире:

Представьте себе сельскохозяйственный комбайн, исполнительные механизмы которого снабжены множеством видеокамер. Он делает пять тысяч снимков в минуту каждого растения в полосе своей траектории и, используя нейросеть, анализирует - не сорняк ли это, не поражено ли оно болезнью или вредителями. И обрабатывает каждое растение индивидуально. Фантастика? Уже не совсем. А через пять лет может стать нормой. - Влад Шершульский, Microsoft

Заведующий лабораторией нейронных систем и глубокого обучения Центра живых систем МФТИ Михаил Бурцев приводит предположительную карту развития нейронных сетей на 2016-2018 годы:

  • системы распознавания и классификации объектов на изображениях;
  • голосовые интерфейсы взаимодействия для интернета вещей;
  • системы мониторинга качества обслуживания в колл-центрах;
  • системы выявления неполадок (в том числе, предсказывающие время технического обслуживания), аномалий, кибер-физических угроз;
  • системы интеллектуальной безопасности и мониторинга;
  • замена ботами части функций операторов колл-центров;
  • системы видеоаналитики;
  • самообучающиеся системы, оптимизирующие управление материальными потоками или расположение объектов (на складах, транспорте);
  • интеллектуальные, самообучающиеся системы управления производственными процессами и устройствами (в том числе, робототехнические);
  • появление систем универсального перевода «на лету» для конференций и персонального использования;
  • появление ботов-консультантов технической поддержки или персональных ассистентов, по функциям близким к человеку.

Директор по распространению технологий «Яндекса» Григорий Бакунов считает, что основой для распространения нейросетей в ближайшие пять лет станет способность таких систем к принятию различных решений: «Главное, что сейчас делают нейронные сети для человека, - избавляют его от излишнего принятия решений. Так что их можно использовать практически везде, где принимаются не слишком интеллектуальные решения живым человеком. В следующие пять лет будет эксплуатироваться именно этот навык, который заменит принятие решений человеком на простой автомат».

Почему нейронные сети стали так популярны именно сейчас

Учёные занимаются разработкой искусственных нейронных сетей более 70 лет. Первую попытку формализовать нейронную сеть относят к 1943 году, когда два американских учёных (Уоррен Мак-Каллок и Уолтер Питтс) представили статью о логическом исчислении человеческих идей и нервной активности.

Однако до недавнего времени, говорит Андрей Калинин из Mail.Ru Group, скорость работы нейросетей была слишком низкой, чтобы они могли получить широкое распространение, и поэтому такие системы в основном использовались в разработках, связанных с компьютерным зрением, а в остальных областях применялись другие алгоритмы машинного обучения.

Трудоёмкая и длительная часть процесса разработки нейронной сети - её обучение. Для того, чтобы нейронная сеть могла корректно решать поставленные задачи, требуется «прогнать» её работу на десятках миллионов наборов входных данных. Именно с появлением различных технологий ускоренного обучения и связывают распространение нейросетей Андрей Калинин и Григорий Бакунов.

Главное, что произошло сейчас, - появились разные уловки, которые позволяют делать нейронные сети, значительно меньше подверженные переобучению.- Григорий Бакунов, «Яндекс»

«Во-первых, появился большой и общедоступный массив размеченных картинок (ImageNet), на которых можно обучаться. Во-вторых, современные видеокарты позволяют в сотни раз быстрее обучать нейросети и их использовать. В-третьих, появились готовые, предобученные нейросети, распознающие образы, на основании которых можно делать свои приложения, не занимаясь длительной подготовкой нейросети к работе. Всё это обеспечивает очень мощное развитие нейросетей именно в области распознавания образов», - замечает Калинин.

Каковы объёмы рынка нейронных сетей

«Очень легко посчитать. Можно взять любую область, в которой используется низкоквалифицированный труд, - например, работу операторов колл-центров - и просто вычесть все людские ресурсы. Я бы сказал, что речь идет о многомиллиардном рынке даже в рамках отдельной страны. Какое количество людей в мире задействовано на низкоквалифицированной работе, можно легко понять. Так что даже очень абстрактно говоря, думаю, речь идет о стомиллиардном рынке во всем мире», - говорит директор по распространению технологий «Яндекса» Григорий Бакунов.

По некоторым оценкам, больше половины профессий будет автоматизировано – это и есть максимальный объём, на который может быть увеличен рынок алгоритмов машинного обучения (и нейронных сетей в частности).- Андрей Калинин, Mail.Ru Group

«Алгоритмы машинного обучения - это следующий шаг в автоматизации любых процессов, в разработке любого программного обеспечения. Поэтому рынок как минимум совпадает со всем рынком ПО, а, скорее, превосходит его, потому что становится возможно делать новые интеллектуальные решения, недоступные старому ПО», - продолжает руководитель направления «Поиск Mail.ru» в Mail.Ru Group Андрей Калинин.

Зачем разработчики нейронных сетей создают мобильные приложения для массового рынка

В последние несколько месяцев на рынке появилось сразу несколько громких развлекательных проектов, использующих нейронные сети - это и популярный видеосервис , который социальная сеть Facebook, и российские приложения для обработки снимков (в июне инвестиции от Mail.Ru Group) и и другие.

Способности собственных нейронных сетей демонстрировали и Google (технология AlphaGo выиграла у чемпиона в го; в марте 2016 года корпорация продала на аукционе 29 картин, нарисованных нейросетями и так далее), и Microsoft (проект CaptionBot , распознающий изображения на снимках и автоматически генерирующий подписи к ним; проект WhatDog , по фотографии определяющий породу собаки; сервис HowOld , определяющий возраст человека на снимке и так далее), и «Яндекс» (в июне команда встроила в приложение «Авто.ру» сервис для распознавания автомобилей на снимках; представила записанный нейросетями музыкальный альбом; в мае создала проект LikeMo.net для рисования в стиле известных художников).

Такие развлекательные сервисы создаются скорее не для решения глобальных задач, на которые и нацелены нейросети, а для демонстрации способностей нейронной сети и проведения её обучения.

«Игры - характерная особенность нашего поведения как биологического вида. С одной стороны, на игровых ситуациях можно смоделировать практически все типичные сценарии человеческого поведения, а с другой - и создатели игр и, особенно, игроки могут получить от процесса массу удовольствия. Есть и сугубо утилитарный аспект. Хорошо спроектированная игра приносит не только удовлетворение игрокам: в процессе игры они обучают нейросетевой алгоритм. Ведь в основе нейросетей как раз и лежит обучение на примерах», - говорит Влад Шершульский из Microsoft.

«В первую очередь это делается для того, чтобы показать возможности технологии. Другой причины, на самом деле, нет. Если речь идёт о Prisma, то понятно, для чего это делали они. Ребята построили некоторый пайплайн, который позволяет им работать с картинками. Для демонстрации этого они избрали для себя довольно простой способ создания стилизаций. Почему бы и нет? Это просто демонстрация работы алгоритмов», - говорит Григорий Бакунов из «Яндекса».

Другого мнения придерживается Андрей Калинин из Mail.Ru Group: «Конечно, это эффектно с точки зрения публики. С другой стороны, я бы не сказал, что развлекательные продукты не могут быть применены в более полезных областях. Например, задача по стилизации образов крайне актуальна для целого ряда индустрий (дизайн, компьютерные игры, мультипликация - вот лишь несколько примеров), и полноценное использование нейросетей может существенно оптимизировать стоимость и методы создания контента для них».

Основные игроки на рынке нейронных сетей

Как отмечает Андрей Калинин, по большому счёту, большинство присутствующих на рынке нейронных сетей мало чем отличаются друг от друга. «Технологии у всех примерно одинаковые. Но применение нейросетей - это удовольствие, которое могут позволить себе далеко не все. Чтобы самостоятельно обучить нейронную сеть и поставить на ней много экспериментов, нужны большие обучающие множества и парк машин с дорогими видеокартами. Очевидно, что такие возможности есть у крупных компаний», - говорит он.

Среди основных игроков рынка Калинин упоминает Google и её подразделение Google DeepMind, создавшее сеть AlphaGo, и Google Brain. Собственные разработки в этой области есть у Microsoft - ими занимается лаборатория Microsoft Research. Созданием нейронных сетей занимаются в IBM, Facebook (подразделение Facebook AI Research), Baidu (Baidu Institute of Deep Learning) и другие. Множество разработок ведётся в технических университетах по всему миру.

Директор по распространению технологий «Яндекса» Григорий Бакунов отмечает, что интересные разработки в области нейронных сетей встречаются и среди стартапов. «Я бы вспомнил, например, компанию ClarifAI . Это небольшой стартап, сделанный когда-то выходцами из Google. Сейчас они, пожалуй, лучше всех в мире умеют определять содержимое картинки». К таким стартапам относятся и MSQRD, и Prisma, и другие.

В России разработками в области нейронных сетей занимаются не только стартапы, но и крупные технологические компании - например, холдинг Mail.Ru Group применяет нейросети для обработки и классификации текстов в «Поиске», анализа изображений. Компания также ведёт экспериментальные разработки, связанные с ботами и диалоговыми системами.

Созданием собственных нейросетей занимается и «Яндекс»: «В основном такие сети уже используются в работе с изображениями, со звуком, но мы исследуем их возможности и в других областях. Сейчас мы много экспериментов ставим в использовании нейросетей в работе с текстом». Разработки ведутся в университетах: в «Сколтехе», МФТИ, МГУ, ВШЭ и других.

Искусственная нейронная сеть — совокупность нейронов, взаимодействующих друг с другом. Они способны принимать, обрабатывать и создавать данные. Это настолько же сложно представить, как и работу человеческого мозга. Нейронная сеть в нашем мозгу работает для того, чтобы вы сейчас могли это прочитать: наши нейроны распознают буквы и складывают их в слова.

Искусственная нейронная сеть - это подобие мозга. Изначально она программировалась с целью упростить некоторые сложные вычислительные процессы. Сегодня у нейросетей намного больше возможностей. Часть из них находится у вас в смартфоне. Ещё часть уже записала себе в базу, что вы открыли эту статью. Как всё это происходит и для чего, читайте далее.

С чего всё началось

Людям очень хотелось понять, откуда у человека разум и как работает мозг. В середине прошлого века канадский нейропсихолог Дональд Хебб это понял. Хебб изучил взаимодействие нейронов друг с другом, исследовал, по какому принципу они объединяются в группы (по-научному - ансамбли) и предложил первый в науке алгоритм обучения нейронных сетей.

Спустя несколько лет группа американских учёных смоделировала искусственную нейросеть, которая могла отличать фигуры квадратов от остальных фигур.

Как же работает нейросеть?

Исследователи выяснили, нейронная сеть - это совокупность слоёв нейронов, каждый из которых отвечает за распознавание конкретного критерия: формы, цвета, размера, текстуры, звука, громкости и т. д. Год от года в результате миллионов экспериментов и тонн вычислений к простейшей сети добавлялись новые и новые слои нейронов. Они работают по очереди. Например, первый определяет, квадрат или не квадрат, второй понимает, квадрат красный или нет, третий вычисляет размер квадрата и так далее. Не квадраты, не красные и неподходящего размера фигуры попадают в новые группы нейронов и исследуются ими.

Какими бывают нейронные сети и что они умеют

Учёные развили нейронные сети так, что те научились различать сложные изображения, видео, тексты и речь. Типов нейронных сетей сегодня очень много. Они классифицируются в зависимости от архитектуры - наборов параметров данных и веса этих параметров, некой приоритетности. Ниже некоторые из них.

Свёрточные нейросети

Нейроны делятся на группы, каждая группа вычисляет заданную ей характеристику. В 1993 году французский учёный Ян Лекун показал миру LeNet 1 - первую свёрточную нейронную сеть, которая быстро и точно могла распознавать цифры, написанные на бумаге от руки. Смотрите сами:

Сегодня свёрточные нейронные сети используются в основном с мультимедиными целями: они работают с графикой, аудио и видео.

Рекуррентные нейросети

Нейроны последовательно запоминают информацию и строят дальнейшие действия на основе этих данных. В 1997 году немецкие учёные модифицировали простейшие рекуррентные сети до сетей с долгой краткосрочной памятью. На их основе затем были разработаны сети с управляемыми рекуррентными нейронами.

Сегодня с помощью таких сетей пишутся и переводятся тексты, программируются боты, которые ведут осмысленные диалоги с человеком, создаются коды страниц и программ.

Использование такого рода нейросетей - это возможность анализировать и генерировать данные, составлять базы и даже делать прогнозы.

В 2015 году компания SwiftKey выпустила первую в мире клавиатуру, работающую на рекуррентной нейросети с управляемыми нейронами. Тогда система выдавала подсказки в процессе набранного текста на основе последних введённых слов. В прошлом году разработчики обучили нейросеть изучать контекст набираемого текста, и подсказки стали осмысленными и полезными:

Комбинированные нейросети (свёрточные + рекуррентные)

Такие нейронные сети способны понимать, что находится на изображении, и описывать это. И наоборот: рисовать изображения по описанию. Ярчайший пример продемонстрировал Кайл Макдональд, взяв нейронную сеть на прогулку по Амстердаму. Сеть мгновенно определяла, что находится перед ней. И практически всегда точно:

Нейросети постоянно самообучаются. Благодаря этому процессу:

1. Skype внедрил возможность синхронного перевода уже для 10 языков. Среди которых, на минуточку, есть русский и японский - одни из самых сложных в мире. Конечно, качество перевода требует серьёзной доработки, но сам факт того, что уже сейчас вы можете общаться с коллегами из Японии по-русски и быть уверенными, что вас поймут, вдохновляет.

2. Яндекс на базе нейронных сетей создал два поисковых алгоритма: «Палех» и «Королёв». Первый помогал найти максимально релевантные сайты для низкочастотных запросов. «Палех» изучал заголовки страниц и сопоставлял их смысл со смыслом запросов. На основе «Палеха» появился «Королёв». Этот алгоритм оценивает не только заголовок, но и весь текстовый контент страницы. Поиск становится всё точнее, а владельцы сайтов разумнее начинают подходить к наполнению страниц.

3. Коллеги сеошников из Яндекса создали музыкальную нейросеть: она сочиняет стихи и пишет музыку. Нейрогруппа символично называется Neurona, и у неё уже есть первый альбом:

4. У Google Inbox с помощью нейросетей осуществляется ответ на сообщение. Развитие технологий идет полный ходом, и сегодня сеть уже изучает переписку и генерирует возможные варианты ответа. Можно не тратить время на печать и не бояться забыть какую-нибудь важную договорённость.

5. YouTube использует нейронные сети для ранжирования роликов, причём сразу по двум принципам: одна нейронная сеть изучает ролики и реакции аудитории на них, другая проводит исследование пользователей и их предпочтений. Именно поэтому рекомендации YouTube всегда в тему.

6. Facebook активно работает над DeepText AI - программой для коммуникаций, которая понимает жаргон и чистит чатики от обсценной лексики.

7. Приложения вроде Prisma и Fabby, созданные на нейросетях, создают изображения и видео:

Colorize восстанавливает цвета на чёрно-белых фото (удивите бабушку!).

MakeUp Plus подбирает для девушек идеальную помаду из реального ассортимента реальных брендов: Bobbi Brown, Clinique, Lancome и YSL уже в деле.


8.
Apple и Microsoft постоянно апгрейдят свои нейронные Siri и Contana. Пока они только исполняют наши приказы, но уже в ближайшем будущем начнут проявлять инициативу: давать рекомендации и предугадывать наши желания.

А что ещё нас ждет в будущем?

Самообучающиеся нейросети могут заменить людей: начнут с копирайтеров и корректоров. Уже сейчас роботы создают тексты со смыслом и без ошибок. И делают это значительно быстрее людей. Продолжат с сотрудниками кол-центров, техподдержки, модераторами и администраторами пабликов в соцсетях. Нейронные сети уже умеют учить скрипт и воспроизводить его голосом. А что в других сферах?

Аграрный сектор

Нейросеть внедрят в спецтехнику. Комбайны будут автопилотироваться, сканировать растения и изучать почву, передавая данные нейросети. Она будет решать - полить, удобрить или опрыскать от вредителей. Вместо пары десятков рабочих понадобятся от силы два специалиста: контролирующий и технический.

Медицина

В Microsoft сейчас активно работают над созданием лекарства от рака. Учёные занимаются биопрограммированием - пытаются оцифрить процесс возникновения и развития опухолей. Когда всё получится, программисты смогут найти способ заблокировать такой процесс, по аналогии будет создано лекарство.

Маркетинг

Маркетинг максимально персонализируется. Уже сейчас нейросети за секунды могут определить, какому пользователю, какой контент и по какой цене показать. В дальнейшем участие маркетолога в процессе сведётся к минимуму: нейросети будут предсказывать запросы на основе данных о поведении пользователя, сканировать рынок и выдавать наиболее подходящие предложения к тому моменту, как только человек задумается о покупке.

Ecommerce

Ecommerce будет внедрён повсеместно. Уже не потребуется переходить в интернет-магазин по ссылке: вы сможете купить всё там, где видите, в один клик. Например, читаете вы эту статью через несколько лет. Очень вам нравится помада на скрине из приложения MakeUp Plus (см. выше). Вы кликаете на неё и попадаете сразу в корзину. Или смотрите видео про последнюю модель Hololens (очки смешанной реальности) и тут же оформляете заказ прямо из YouTube.

Едва ли не в каждой области будут цениться специалисты со знанием или хотя бы пониманием устройства нейросетей, машинного обучения и систем искусственного интеллекта. Мы будем существовать с роботами бок о бок. И чем больше мы о них знаем, тем спокойнее нам будет жить.

P. S. Зинаида Фолс - нейронная сеть Яндекса, пишущая стихи. Оцените произведение, которое машина написала, обучившись на Маяковском (орфография и пунктуация сохранены):

« Это »

это
всего навсего
что-то
в будущем
и мощь
у того человека
есть на свете все или нет
это кровьа вокруг
по рукам
жиреет
слава у
земли
с треском в клюве

Впечатляет, правда?

Интеллектуальные системы на основе искусственных нейронных сетей позволяют с успехом решать проблемы распознавания образов, выполнения прогнозов, оптимизации, ассоциативной памяти и управления.

17.04.1997 Жианчанг Мао, Энил Джейн

Интеллектуальные системы на основе искусственных нейронных сетей позволяют с успехом решать проблемы распознавания образов, выполнения прогнозов, оптимизации, ассоциативной памяти и управления. Известны и иные, более традиционные подходы к решению этих проблем, однако они не обладают необходимой гибкостью за пределами ограниченных условий. ИНС дают многообещающие альтернативные решения, и многие приложения выигрывают от их использования.

Интеллектуальные системы на основе искусственных нейронных сетей (ИНС) позволяют с успехом решать проблемы распознавания образов, выполнения прогнозов, оптимизации, ассоциативной памяти и управления. Известны и иные, более традиционные подходы к решению этих проблем, однако они не обладают необходимой гибкостью за пределами ограниченных условий. ИНС дают многообещающие альтернативные решения, и многие приложения выигрывают от их использования. Данная статья является введением в современную проблематику ИНС и содержит обсуждение причин их стремительного развития. Здесь описаны также основные принципы работы биологического нейрона и его искусственной вычислительной модели. Несколько слов будет сказано о нейросетевых архитектурах и процессах обучения ИНС. Венчает статью знакомство с проблемой распознавания текста - наиболее успешной реализацией ИНС.

Длительный период эволюции придал мозгу человека много качеств, которые отсутствуют как в машинах с архитектурой фон Неймана, так и в современных параллельных компьютерах. К ним относятся:

  • массовый параллелизм;
  • распределенное представление информации и вычисления;
  • способность к обучению и способность к обобщению;
  • адаптивность;
  • свойство контекстуальной обработки информации;
  • толерантность к ошибкам;
  • низкое энергопотребление.

Можно предположить, что приборы, построенные на тех же принципах, что и биологические нейроны, будут обладать перечисленными характеристиками.

От биологических сетей к ИНС

Современные цифровые вычислительные машины превосходят человека по способности производить числовые и символьные вычисления. Однако человек может без усилий решать сложные задачи восприятия внешних данных (например, узнавание человека в толпе только по его промелькнувшему лицу) с такой скоростью и точностью, что мощнейший в мире компьютер по сравнению с ним кажется безнадежным тугодумом. В чем причина столь значительного различия в их производительности? Архитектура биологической нейронной системы совершенно не похожа на архитектуру машины фон Неймана (Таблица 1), существенно влияет на типы функций, которые более эффективно исполняются каждой моделью.

Таблица 1. Машина фон Неймана по сравнению с биологической нейронной системой

Машина фон Неймана Биологическая нейронная система
Процессор Сложный Простой
Высокоскоростной Низкоскоростной
Один или несколько Большое количество
Память Отделена от процессора Интегрирована в процессор
Локализована Распределенная
Адресация не по содержанию Адресация по содержанию
Вычисления Централизованные Распределенные
Последовательные Параллельные
Хранимые программы Самообучение
Надежность Высокая уязвимость Живучесть
Специализация Численные и символьные oперации Проблемы восприятия
Среда функционирования Строго определенная Плохо определенная
Строго ограниченная Без ограничений

Подобно биологической нейронной системе ИНС является вычислительной системой с огромным числом параллельно функционирующих простых процессоров с множеством связей. Модели ИНС в некоторой степени воспроизводят "организационные" принципы, свойственные мозгу человека. Моделирование биологической нейронной системы с использованием ИНС может также способствовать лучшему пониманию биологических функций. Такие технологии производства, как VLSI (сверхвысокий уровень интеграции) и оптические аппаратные средства, делают возможным подобное моделирование.

Глубокое изучение ИНС требует знания нейрофизиологии, науки о познании, психологии, физики (статистической механики), теории управления, теории вычислений, проблем искусственного интеллекта, статистики/математики, распознавания образов, компьютерного зрения, параллельных вычислений и аппаратных средств (цифровых/аналоговых/VLSI/оптических). С другой стороны, ИНС также стимулируют эти дисциплины, обеспечивая их новыми инструментами и представлениями. Этот симбиоз жизненно необходим для исследований по нейронным сетям.

Представим некоторые проблемы, решаемые в контексте ИНС и представляющие интерес для ученых и инженеров.

Классификация образов. Задача состоит в указании принадлежности входного образа (например, речевого сигнала или рукописного символа), представленного вектором признаков, одному или нескольким предварительно определенным классам. К известным приложениям относятся распознавание букв, распознавание речи, классификация сигнала электрокардиограммы, классификация клеток крови.

Кластеризация/категоризация. При решении задачи кластеризации, которая известна также как классификация образов "без учителя", отсутствует обучающая выборка с метками классов. Алгоритм кластеризации основан на подобии образов и размещает близкие образы в один кластер. Известны случаи применения кластеризации для извлечения знаний, сжатия данных и исследования свойств данных.

Аппроксимация функций. Предположим, что имеется обучающая выборка ((x 1 ,y 1 ), (x 2 ,y 2 )..., (x n ,y n )) (пары данных вход-выход), которая генерируется неизвестной функцией (x), искаженной шумом. Задача аппроксимации состоит в нахождении оценки неизвестной функции (x). Аппроксимация функций необходима при решении многочисленных инженерных и научных задач моделирования.

Предсказание/прогноз. Пусть заданы n дискретных отсчетов {y(t 1 ), y(t 2 )..., y(t n )} в последовательные моменты времени t 1 , t 2 ,..., t n . Задача состоит в предсказании значения y(t n+1 ) в некоторый будущий момент времени t n+1 . Предсказание/прогноз имеют значительное влияние на принятие решений в бизнесе, науке и технике. Предсказание цен на фондовой бирже и прогноз погоды являются типичными приложениями техники предсказания/прогноза.

Оптимизация. Многочисленные проблемы в математике, статистике, технике, науке, медицине и экономике могут рассматриваться как проблемы оптимизации. Задачей алгоритма оптимизации является нахождение такого решения, которое удовлетворяет системе ограничений и максимизирует или минимизирует целевую функцию. Задача коммивояжера, относящаяся к классу NP-полных, является классическим примером задачи оптимизации.

Память, адресуемая по содержанию. В модели вычислений фон Неймана обращение к памяти доступно только посредством адреса, который не зависит от содержания памяти. Более того, если допущена ошибка в вычислении адреса, то может быть найдена совершенно иная информация. Ассоциативная память, или память, адресуемая по содержанию, доступна по указанию заданного содержания. Содержимое памяти может быть вызвано даже по частичному входу или искаженному содержанию. Ассоциативная память чрезвычайно желательна при создании мультимедийных информационных баз данных.

Управление. Рассмотрим динамическую систему, заданную совокупностью {u(t), y(t)}, где u(t) является входным управляющим воздействием, а y(t) - выходом системы в момент времени t. В системах управления с эталонной моделью целью управления является расчет такого входного воздействия u(t), при котором система следует по желаемой траектории, диктуемой эталонной моделью. Примером является оптимальное управление двигателем.

Краткий исторический обзор

Исследования в области ИНС пережили три периода активизации. Первый пик в 40-х годах обусловлен пионерской работой МакКаллока и Питтса . Второй возник в 60-х благодаря теореме сходимости перцептрона Розенблатта и работе Минского и Пейперта , указавшей ограниченные возможности простейшего перцептрона. Результаты Минского и Пейперта погасили энтузиазм большинства исследователей, особенно тех, кто работал в области вычислительных наук. Возникшее в исследованиях по нейронным сетям затишье продлилось почти 20 лет. С начала 80-х годов ИНС вновь привлекли интерес исследователей, что связано с энергетическим подходом Хопфилда и алгоритмом обратного распространения для обучения многослойного перцептрона (многослойные сети прямого распространения), впервые предложенного Вербосом и независимо разработанного рядом других авторов. Алгоритм получил известность благодаря Румельхарту в 1986году Андерсон и Розенфельд подготовили подробную историческую справку о развитии ИНС.

Биологические нейронные сети

Нейрон (нервная клетка) является особой биологической клеткой, которая обрабатывает информацию (рис. 1). Она состоит из тела клетки (cell body), или сомы (soma), и двух типов внешних древоподобных ветвей: аксона (axon) и дендритов (dendrites). Тело клетки включает ядро (nucleus), которое содержит информацию о наследственных свойствах, и плазму, обладающую молекулярными средствами для производства необходимых нейрону материалов. Нейрон получает сигналы (импульсы) от других нейронов через дендриты (приемники) и передает сигналы, сгенерированные телом клетки, вдоль аксона (передатчик), который в конце разветвляется на волокна (strands). На окончаниях этих волокон находятся синапсы (synapses).

Рис. 1.

Синапс является элементарной структурой и функциональным узлом между двумя нейронами (волокно аксона одного нейрона и дендрит другого). Когда импульс достигает синаптического окончания, высвобождаются определенные химические вещества, называемые нейротрансмиттерами. Нейротрансмиттеры диффундируют через синаптическую щель, возбуждая или затормаживая, в зависимости от типа синапса, способность нейрона-приемника генерировать электрические импульсы. Результативность синапса может настраиваться проходящими через него сигналами, так что синапсы могут обучаться в зависимости от активности процессов, в которых они участвуют. Эта зависимость от предыстории действует как память, которая, возможно, ответственна за память человека.

Кора головного мозга человека является протяженной, образованной нейронами поверхностью толщиной от 2 до 3 мм с площадью около 2200 см 2 , что вдвое превышает площадь поверхности стандартной клавиатуры. Кора головного мозга содержит около 1011 нейронов, что приблизительно равно числу звезд Млечного пути . Каждый нейрон связан с 103 - 104 другими нейронами. В целом мозг человека содержит приблизительно от 1014 до 1015 взаимосвязей.

Нейроны взаимодействуют посредством короткой серии импульсов, как правило, продолжительностью несколько мсек. Сообщение передается посредством частотно-импульсной модуляции. Частота может изменяться от нескольких единиц до сотен герц, что в миллион раз медленнее, чем самые быстродействующие переключательные электронные схемы. Тем не менее сложные решения по восприятию информации, как, например, распознавание лица, человек принимает за несколько сотен мс. Эти решения контролируются сетью нейронов, которые имеют скорость выполнения операций всего несколько мс. Это означает, что вычисления требуют не более 100 последовательных стадий. Другими словами, для таких сложных задач мозг "запускает" параллельные программы, содержащие около 100 шагов. Это известно как правило ста шагов . Рассуждая аналогичным образом, можно обнаружить, что количество информации, посылаемое от одного нейрона другому, должно быть очень маленьким (несколько бит). Отсюда следует, что основная информация не передается непосредственно, а захватывается и распределяется в связях между нейронами. Этим объясняется такое название, как коннекционистская модель, применяемое к ИНС.

Основные понятия

Модель технического нейрона

МакКаллок и Питтс предложили использовать бинарный пороговый элемент в качестве модели искусственного нейрона. Этот математический нейрон вычисляет взвешенную сумму n входных сигналов x j , j = 1, 2... n, и формирует на выходе сигнал величины 1, если эта сумма превышает определенный порог u, и 0 - в противном случае.

Часто удобно рассматривать u как весовой коэффициент, связанный с постоянным входом x 0 = 1. Положительные веса соответствуют возбуждающим связям, а отрицательные - тормозным. МакКаллок и Питтс доказали, что при соответствующим образом подобранных весах совокупность параллельно функционирующих нейронов подобного типа способна выполнять универсальные вычисления. Здесь наблюдается определенная аналогия с биологическим нейроном: передачу сигнала и взаимосвязи имитируют аксоны и дендриты, веса связей соответствуют синапсам, а пороговая функция отражает активность сомы.

Архитектура нейронной сети

ИНС может рассматриваться как направленный граф со взвешенными связями, в котором искусственные нейроны являются узлами. По архитектуре связей ИНС могут быть сгруппированы в два класса (рис. 2): сети прямого распространения, в которых графы не имеют петель, и рекуррентные сети, или сети с обратными связями.

Рис. 2.

В наиболее распространенном семействе сетей первого класса, называемых многослойным перцептроном, нейроны расположены слоями и имеют однонаправленные связи между слоями. На рис. 2 представлены типовые сети каждого класса. Сети прямого распространения являются статическими в том смысле, что на заданный вход они вырабатывают одну совокупность выходных значений, не зависящих от предыдущего состояния сети. Рекуррентные сети являются динамическими, так как в силу обратных связей в них модифицируются входы нейронов, что приводит к изменению состояния сети.

Обучение

Способность к обучению является фундаментальным свойством мозга. В контексте ИНС процесс обучения может рассматриваться как настройка архитектуры сети и весов связей для эффективного выполнения специальной задачи. Обычно нейронная сеть должна настроить веса связей по имеющейся обучающей выборке. Функционирование сети улучшается по мере итеративной настройки весовых коэффициентов. Свойство сети обучаться на примерах делает их более привлекательными по сравнению с системами, которые следуют определенной системе правил функционирования, сформулированной экспертами.

Для конструирования процесса обучения, прежде всего, необходимо иметь модель внешней среды, в которой функционирует нейронная сеть - знать доступную для сети информацию. Эта модель определяет парадигму обучения . Во-вторых, необходимо понять, как модифицировать весовые параметры сети - какие правила обучения управляют процессом настройки. Алгоритм обучения означает процедуру, в которой используются правила обучения для настройки весов.

Существуют три парадигмы обучения: "с учителем", "без учителя" (самообучение) и смешанная. В первом случае нейронная сеть располагает правильными ответами (выходами сети) на каждый входной пример. Веса настраиваются так, чтобы сеть производила ответы как можно более близкие к известным правильным ответам. Усиленный вариант обучения с учителем предполагает, что известна только критическая оценка правильности выхода нейронной сети, но не сами правильные значения выхода. Обучение без учителя не требует знания правильных ответов на каждый пример обучающей выборки. В этом случае раскрывается внутренняя структура данных или корреляции между образцами в системе данных, что позволяет распределить образцы по категориям. При смешанном обучении часть весов определяется посредством обучения с учителем, в то время как остальная получается с помощью самообучения.

Теория обучения рассматривает три фундаментальных свойства, связанных с обучением по примерам: емкость, сложность образцов и вычислительная сложность. Под емкостью понимается, сколько образцов может запомнить сеть, и какие функции и границы принятия решений могут быть на ней сформированы. Сложность образцов определяет число обучающих примеров, необходимых для достижения способности сети к обобщению. Слишком малое число примеров может вызвать "переобученность" сети, когда она хорошо функционирует на примерах обучающей выборки, но плохо - на тестовых примерах, подчиненных тому же статистическому распределению. Известны 4 основных типа правил обучения: коррекция по ошибке, машина Больцмана, правило Хебба и обучение методом соревнования.

Правило коррекции по ошибке. При обучении с учителем для каждого входного примера задан желаемый выход d. Реальный выход сети y может не совпадать с желаемым. Принцип коррекции по ошибке при обучении состоит в использовании сигнала (d-y) для модификации весов, обеспечивающей постепенное уменьшение ошибки. Обучение имеет место только в случае, когда перцептрон ошибается. Известны различные модификации этого алгоритма обучения .

Обучение Больцмана. Представляет собой стохастическое правило обучения, которое следует из информационных теоретических и термодинамических принципов . Целью обучения Больцмана является такая настройка весовых коэффициентов, при которой состояния видимых нейронов удовлетворяют желаемому распределению вероятностей. Обучение Больцмана может рассматриваться как специальный случай коррекции по ошибке, в котором под ошибкой понимается расхождение корреляций состояний в двух режимах.

Правило Хебба. Самым старым обучающим правилом является постулат обучения Хебба . Хебб опирался на следующие нейрофизиологические наблюдения: если нейроны с обеих сторон синапса активизируются одновременно и регулярно, то сила синаптической связи возрастает. Важной особенностью этого правила является то, что изменение синаптического веса зависит только от активности нейронов, которые связаны данным синапсом. Это существенно упрощает цепи обучения в реализации VLSI.

Обучение методом соревнования. В отличие от обучения Хебба, в котором множество выходных нейронов могут возбуждаться одновременно, при соревновательном обучении выходные нейроны соревнуются между собой за активизацию. Это явление известно как правило "победитель берет все". Подобное обучение имеет место в биологических нейронных сетях. Обучение посредством соревнования позволяет кластеризовать входные данные: подобные примеры группируются сетью в соответствии с корреляциями и представляются одним элементом.

При обучении модифицируются только веса "победившего" нейрона. Эффект этого правила достигается за счет такого изменения сохраненного в сети образца (вектора весов связей победившего нейрона), при котором он становится чуть ближе ко входному примеру. На рис. 3 дана геометрическая иллюстрация обучения методом соревнования. Входные векторы нормализованы и представлены точками на поверхности сферы. Векторы весов для трех нейронов инициализированы случайными значениями. Их начальные и конечные значения после обучения отмечены Х на рис. 3а и 3б соответственно. Каждая из трех групп примеров обнаружена одним из выходных нейронов, чей весовой вектор настроился на центр тяжести обнаруженной группы.

Рис. 3.

Можно заметить, что сеть никогда не перестанет обучаться, если параметр скорости обучения не равен 0. Некоторый входной образец может активизировать другой выходной нейрон на последующих итерациях в процессе обучения. Это ставит вопрос об устойчивости обучающей системы. Система считается устойчивой, если ни один из примеров обучающей выборки не изменяет своей принадлежности к категории после конечного числа итераций обучающего процесса. Один из способов достижения стабильности состоит в постепенном уменьшении до 0 параметра скорости обучения. Однако это искусственное торможение обучения вызывает другую проблему, называемую пластичностью и связанную со способностью к адаптации к новым данным. Эти особенности обучения методом соревнования известны под названием дилеммы стабильности-пластичности Гроссберга.

В Таблице 2 представлены различные алгоритмы обучения и связанные с ними архитектуры сетей (список не является исчерпывающим). В последней колонке перечислены задачи, для которых может быть применен каждый алгоритм. Каждый алгоритм обучения ориентирован на сеть определенной архитектуры и предназначен для ограниченного класса задач. Кроме рассмотренных, следует упомянуть некоторые другие алгоритмы: Adaline и Madaline , линейный дискриминантный анализ , проекции Саммона , анализ главных компонентов .

Таблица 2. Известные алгоритмы обучения

Парадигма Обучающее правило Архитектура Алгоритм обучения Задача
С учителем Коррекция ошибки Однослойный и многослойный перцептрон Алгоритмы обучения перцептрона
Обратное распространение
Adaline и Madaline
Классификация образов
Аппроксимация функций
Предскащание, управление
Больцман Рекуррентная Алгоритм обучения Больцмана Классификация образов
Хебб Линейный дискриминантный анализ Анализ данных
Классификация образов
Соревнование Соревнование Векторное квантование Категоризация внутри класса Сжатие данных
Сеть ART ARTMap Классификация образов
Без учителя Коррекция ошибки Многослойная прямого распространения Проекция Саммона Категоризация внутри класса Анализ данных
Хебб Прямого распространения или соревнование Анализ главных компонентов Анализ данных
Сжатие данных
Сеть Хопфилда Обучение ассоциативной памяти Ассоциативная память
Соревнование Соревнование Векторное квантование Категоризация
Сжатие данных
SOM Кохонена SOM Кохонена Категоризация
Анализ данных
Сети ART ART1, ART2 Категоризация
Смешанная Коррекция ошибки и соревнование Сеть RBF Алгоритм обучения RBF Классификация образов
Аппроксимация функций
Предсказание, управление

Многослойные сети прямого распространения

Стандартная L-слойная сеть прямого распространения состоит из слоя входных узлов (будем придерживаться утверждения, что он не включается в сеть в качестве самостоятельного слоя), (L-1) скрытых слоев и выходного слоя, соединенных последовательно в прямом направлении и не содержащих связей между элементами внутри слоя и обратных связей между слоями. На рис. 4 приведена структура трехслойной сети.

Рис. 4.

Многослойный перцептрон

Наиболее популярный класс многослойных сетей прямого распространения образуют многослойные перцептроны, в которых каждый вычислительный элемент использует пороговую или сигмоидальную функцию активации. Многослойный перцептрон может формировать сколь угодно сложные границы принятия решения и реализовывать произвольные булевы функции . Разработка алгоритма обратного распространения для определения весов в многослойном перцептроне сделала эти сети наиболее популярными у исследователей и пользователей нейронных сетей. Геометрическая интерпретация объясняет роль элементов скрытых слоев (используется пороговая активационная функция).

RBF-сети

Сети, использующие радиальные базисные функции (RBF-сети), являются частным случаем двухслойной сети прямого распространения. Каждый элемент скрытого слоя использует в качестве активационной функции радиальную базисную функцию типа гауссовой. Радиальная базисная функция (функция ядра) центрируется в точке, которая определяется весовым вектором, связанным с нейроном. Как позиция, так и ширина функции ядра должны быть обучены по выборочным образцам. Обычно ядер гораздо меньше, чем обучающих примеров. Каждый выходной элемент вычисляет линейную комбинацию этих радиальных базисных функций. С точки зрения задачи аппроксимации скрытые элементы формируют совокупность функций, которые образуют базисную систему для представления входных примеров в построенном на ней пространстве.

Существуют различные алгоритмы обучения RBF-сетей . Основной алгоритм использует двушаговую стратегию обучения, или смешанное обучение. Он оценивает позицию и ширину ядра с использованием алгоритма кластеризации "без учителя", а затем алгоритм минимизации среднеквадратической ошибки "с учителем" для определения весов связей между скрытым и выходным слоями. Поскольку выходные элементы линейны, применяется неитерационный алгоритм. После получения этого начального приближения используется градиентный спуск для уточнения параметров сети.

Этот смешанный алгоритм обучения RBF-сети сходится гораздо быстрее, чем алгоритм обратного распространения для обучения многослойных перцептронов. Однако RBF-сеть часто содержит слишком большое число скрытых элементов. Это влечет более медленное функционирование RBF-сети, чем многослойного перцептрона. Эффективность (ошибка в зависимости от размера сети) RBF-сети и многослойного перцептрона зависят от решаемой задачи.

Нерешенные проблемы

Существует множество спорных вопросов при проектировании сетей прямого распространения - например, сколько слоев необходимы для данной задачи, сколько следует выбрать элементов в каждом слое, как сеть будет реагировать на данные, не включенные в обучающую выборку (какова способность сети к обобщению), и какой размер обучающей выборки необходим для достижения "хорошей" способности сети к обобщению.

Хотя многослойные сети прямого распространения широко применяются для классификации и аппроксимации функций , многие параметры еще должны быть определены путем проб и ошибок. Существующие теоретические результаты дают лишь слабые ориентиры для выбора этих параметров в практических приложениях.

Самоорганизующиеся карты Кохонена

Самоорганизующиеся карты Кохонена (SOM) обладают благоприятным свойством сохранения топологии, которое воспроизводит важный аспект карт признаков в коре головного мозга высокоорганизованных животных. В отображении с сохранением топологии близкие входные примеры возбуждают близкие выходные элементы. На рис. 2 показана основная архитектура сети SOM Кохонена. По существу она представляет собой двумерный массив элементов, причем каждый элемент связан со всеми n входными узлами.

Такая сеть является специальным случаем сети, обучающейся методом соревнования, в которой определяется пространственная окрестность для каждого выходного элемента. Локальная окрестность может быть квадратом, прямоугольником или окружностью. Начальный размер окрестности часто устанавливается в пределах от 1/2 до 2/3 размера сети и сокращается согласно определенному закону (например, по экспоненциально убывающей зависимости). Во время обучения модифицируются все веса, связанные с победителем и его соседними элементами.

Самоорганизующиеся карты (сети) Кохонена могут быть использованы для проектирования многомерных данных, аппроксимации плотности и кластеризации. Эта сеть успешно применялась для распознавания речи, обработки изображений, в робототехнике и в задачах управления . Параметры сети включают в себя размерность массива нейронов, число нейронов в каждом измерении, форму окрестности, закон сжатия окрестности и скорость обучения.

Модели теории адаптивного резонанса

Напомним, что дилемма стабильности-пластичности является важной особенностью обучения методом соревнования. Как обучать новым явлениям (пластичность) и в то же время сохранить стабильность, чтобы существующие знания не были стерты или разрушены?

Карпентер и Гроссберг, разработавшие модели теории адаптивного резонанса (ART1, ART2 и ARTMAP) , сделали попытку решить эту дилемму. Сеть имеет достаточное число выходных элементов, но они не используются до тех пор, пока не возникнет в этом необходимость. Будем говорить, что элемент распределен (не распределен), если он используется (не используется). Обучающий алгоритм корректирует имеющийся прототип категории, только если входной вектор в достаточной степени ему подобен. В этом случае они резонируют. Степень подобия контролируется параметром сходства k, 0

Чтобы проиллюстрировать модель, рассмотрим сеть ART1, которая рассчитана на бинарный (0/1) вход. Упрощенная схема архитектуры ART1 представлена на рис. 5. Она содержит два слоя элементов с полными связями.

Рис. 5.

Направленный сверху вниз весовой вектор w j соответствует элементу j входного слоя, а направленный снизу вверх весовой вектор i связан с выходным элементом i; i является нормализованной версией w i . Векторы w j сохраняют прототипы кластеров. Роль нормализации состоит в том, чтобы предотвратить доминирование векторов с большой длиной над векторами с малой длиной. Сигнал сброса R генерируется только тогда, когда подобие ниже заданного уровня.

Модель ART1 может создать новые категории и отбросить входные примеры, когда сеть исчерпала свою емкость. Однако число обнаруженных сетью категорий чувствительно к параметру сходства.

Сеть Хопфилда

Хопфилд использовал функцию энергии как инструмент для построения рекуррентных сетей и для понимания их динамики . Формализация Хопфилда сделала ясным принцип хранения информации как динамически устойчивых аттракторов и популяризовала использование рекуррентных сетей для ассоциативной памяти и для решения комбинаторных задач оптимизации.

Динамическое изменение состояний сети может быть выполнено по крайней мере двумя способами: синхронно и асинхронно. В первом случае все элементы модифицируются одновременно на каждом временном шаге, во втором - в каждый момент времени выбирается и подвергается обработке один элемент. Этот элемент может выбираться случайно. Главное свойство энергетической функции состоит в том, что в процессе эволюции состояний сети согласно уравнению она уменьшается и достигает локального минимума (аттрактора), в котором она сохраняет постоянную энергию.

Ассоциативная память

Если хранимые в сети образцы являются аттракторами, она может использоваться как ассоциативная память. Любой пример, находящийся в области притяжения хранимого образца, может быть использован как указатель для его восстановления.

Ассоциативная память обычно работает в двух режимах: хранения и восстановления. В режиме хранения веса связей в сети определяются так, чтобы аттракторы запомнили набор p n-мерных образцов {x 1 , x 2 ,..., x p ), которые должны быть сохранены. Во втором режиме входной пример используется как начальное состояние сети, и далее сеть эволюционирует согласно своей динамике. Выходной образец устанавливается, когда сеть достигает равновесия.

Сколько примеров могут быть сохранены в сети с n бинарными элементами? Другими словами, какова емкость памяти сети? Она конечна, так как сеть с n бинарными элементами имеет максимально 2n различных состояний, и не все из них являются аттракторами. Более того, не все аттракторы могут хранить полезные образцы. Ложные аттракторы могут также хранить образцы, но они отличаются от примеров обучающей выборки. Показано, что максимальное число случайных образцов, которые может хранить сеть Хопфилда, составляет Pmax (0.15 n. Когда число сохраняемых образцов p (0.15 n, достигается наиболее успешный вызов данных из памяти. Если запоминаемые образцы представлены ортогональными векторами (в отличие от случайных), то количество сохраненных в памяти образцов будет увеличиваться. Число ложных аттракторов возрастает, когда p достигает емкости сети. Несколько правил обучения предложено для увеличения емкости памяти сети Хопфилда . Заметим, что в сети для хранения p n-битных примеров требуется реализовать 2n связей.

Минимизация энергии

Сеть Хопфилда эволюционирует в направлении уменьшения своей энергии. Это позволяет решать комбинаторные задачи оптимизации, если они могут быть сформулированы как задачи минимизации энергии. В частности, подобным способом может быть сформулирована задача коммивояжера.

Приложения

В начале статьи были описаны 7 классов различных приложений ИНС. Следует иметь в виду, что для успешного решения реальных задач необходимо определить ряд характеристик, включая модель сети, ее размер, функцию активации, параметры обучения и набор обучающих примеров. Для иллюстрации практического применения сетей прямого распространения рассмотрим проблему распознавания изображений символов (задача OCR, которая состоит в обработке отсканированного изображения текста и его преобразовании в текстовую форму).

Система OCR

Система OCR обычно состоит из блоков препроцессирования, сегментации, выделения характеристик, классификации и контекстуальной обработки. Бумажный документ сканируется, и создается изображение в оттенках серого цвета или бинарное (черно-белое) изображение. На стадии препроцессирования применяется фильтрация для удаления шума, область текста локализуется и преобразуется к бинарному изображению с помощью глобального и локального адаптивного порогового преобразователя. На шаге сегментации изображение текста разделяется на отдельные символы. Эта задача особенно трудна для рукописного текста, который содержит связи между соседними символами. Один из эффективных приемов состоит в расчленении составного образца на малые образцы (промежуточная сегментация) и нахождении точек правильной сегментации с использованием выхода классификатора по образцам. Вследствие различного наклона, искажений, помех и стилей письма распознавание сегментированных символов является непростой задачей.

Схемы вычислений

На рис. 6 представлены две основные схемы использования ИНС в OCR системах. Первая выполняет явное извлечение характерных признаков (не обязательно на нейронной сети). Например, это могут быть признаки обхода по контуру. Выделенные признаки подаются на вход многослойной сети прямого распространения . Эта схема отличается гибкостью в отношении использования большого разнообразия признаков. Другая схема не предусматривает явного выделения признаков из исходных данных. Извлечение признаков происходит неявно в скрытых слоях ИНС. Удобство этой схемы состоит в том, что выделение признаков и классификация объединены и обучение происходит одновременно, что дает оптимальный результат классификации. Однако схема требует большего размера сети, чем в первом случае.

Рис. 6.

Типичный пример подобной интегрированной схемы рассмотрен Куном для распознавания zip-кода.

Результаты

ИНС очень эффективно применяются в OCR-приложениях. Однако, нет убедительных доказательств их превосходства над соответствующими статистическими классификаторами. На первой конференции по OCR-системам в 1992 г. более 40 систем распознавания рукописного текста были сопоставлены для одних и тех же данных. Из них 10 лучших использовали вариант многослойной сети прямого распространения или классификатор "ближайшего соседа". ИНС имеют тенденцию к превосходству по скорости и требуемой памяти по сравнению с методом "ближайшего соседа", в отличие от которого скорость классификации с применением ИНС не зависит от объема обучающей выборки. Точность распознавания лучших OCR-систем на базе данных предварительно сегментированных символов составила около 98% для цифр, 96% для заглавных букв и 87 - для строчных. (Низкая точность для строчных букв вызвана в значительной степени тем, что тестовые данные существенно отличались от тренировочных.) По данным теста можно сделать вывод, что на изолированных символах OCR система близка по точности к человеку. Однако человек опережает системы OCR на свободных от ограничений и рукописных документах.

***

Развитие ИНС вызвало немало энтузиазма и критики. Некоторые сравнительные исследования оказались оптимистичными, другие - пессимистичными. Для многих задач, таких как распознавание образов, пока не создано доминирующих подходов. Выбор лучшей технологии должен диктоваться природой задачи. Нужно пытаться понять возможности, предпосылки и область применения различных подходов и максимально использовать их дополнительные преимущества для дальнейшего развития интеллектуальных систем. Подобные усилия могут привести к синергетическому подходу, который объединяет ИНС с другими технологиями для существенного прорыва в решении актуальных проблем. Как недавно заметил Минский, пришло время строить системы за рамками отдельных компонентов. Индивидуальные модули важны, но мы также нуждаемся в методологии интеграции. Ясно, что взаимодействие и совместные работы исследователей в области ИНС и других дисциплин позволят не только избежать повторений, но и (что более важно) стимулируют и придают новые качества развитию отдельных направлений.

Литература

1. DARPA Neural Network Study, AFCEA Int"l Press, Fairfax, Va., 1988.
2. J. Hertz, A. Krogh, and R.G. Palmer, Introduction to the Theory of Neural Computation, Addison-Wesley, Reading, Mass., 1991.
3. S. Haykin, Neural Networks: A Comprehensive Foundation, MacMillan College Publishing Co., New York, 1994.
4. W.S. McCulloch and W. Pitts, "A logical Calculus of Ideas Immanent in Nervous Activity", Bull. Mathematical Biophysics, Vol. 5, 1943, pp. 115-133.
5. R.Rosenblatt, "Principles of Neurodynamics", Spartan Books, New York, 1962.
6. M. Miтnsky and S. Papert, "Perceptrons: An Introduction to Computational Geometry", MIT Press, Cambridge, Mass., 1969.
7. J.J. Hopfield, "Neural Networks and Physical Systems with Emergent Collective Computational Abilities", in Proc. National Academy of Sciencies, USA 79, 1982, pp. 2554-2558.
8. P. Werbos, "Beyond Regression: New Tools for Prediction and Analysis in the Behavioral Sciences", Phd Thesis, Dept. of Applied Mathematics, Harvard University, Cambridge, Mass., 1974.
9. D.E. Rumelhart and J.L. McClelland, Parallel Distributed Processing: Exploration in the Microstructure of Cognition, MIT Press, Cambridge, Mass., 1986.
10. J.A. Anderson and E. Rosenfeld, "Neurocomputing: Foundation of Research", MIT Press, Cambridge, Mass., 1988.
11. S. Brunak and B. Lautrup, Neural Networks, Computers with Intuition, World Scientific, Singapore, 1990.
12. J. Feldman, M.A. Fanty, and N.H. Goddard, "Computing with Structured Neural Networks", Computer, Vol. 21, No. 3, Mar.1988, pp. 91-103.
13. D.O. Hebb, The Organization of Behavior, John Wiley & Sons, New York, 1949.
14. R.P.Lippmann, "An Introduction to Computing with Neural Nets", IEEE ASSP Magazine, Vol.4, No.2, Apr. 1987, pp. 4-22.
15. A.K. Jain and J. Mao, "Neural Networks and Pattern Recognition", in Computational Intelligence: Imitating Life, J.M. Zurada, R.J. Marks II, and C.J. Robinson, eds., IEEE Press, Piscataway, N.J., 1994, pp. 194-212.
16. T. Kohonen, SelfOrganization and Associative Memory, Third Edition, Springer-Verlag, New York, 1989.
17. G.A.Carpenter and S. Grossberg, Pattern Recognition by SelfOrganizing Neural Networks, MIT Press, Cambridge, Mass., 1991.
18. "The First Census Optical Character Recognition System Conference", R.A.Wilkinson et al., eds., . Tech. Report, NISTIR 4912, US Deop. Commerse, NIST, Gaithersburg, Md., 1992.
19. K. Mohiuddin and J. Mao, "A Comparative Study of Different Classifiers for Handprinted Character Recognition", in Pattern Recognition in Practice IV, E.S. Gelsema and L.N. Kanal, eds., Elsevier Science, The Netherlands, 1994, pp. 437-448.
20. Y.Le Cun et al., "Back-Propagation Applied to Handwritten Zip Code Recognition", Neural Computation, Vol 1, 1989, pp. 541-551.
21. M. Minsky, "Logical Versus Analogical or Symbolic Versus Connectionist or Neat Versus Scruffy", AI Magazine, Vol. 65, No. 2, 1991, pp. 34-51.

Анил К. Джейн ([email protected]) - Мичиганский университет; Жианчанг Мао, К М. Моиуддин - Исследовательский Центр IBM в Альмадене.

Anil K., Jain, Jianchang Mao, K.M. Mohiuddin. Artificial Neural Networks: A Tutorialп, IEEE Computer, Vol.29, No.3, March/1996, pp. 31-44. IEEE Computer Society. All rights reserved. Reprinted with permission.



Начнем рассмотрение материала с ознакомления и определения самого понятия искусственной нейронной системы.

может рассматриваться как аналоговый вычислительный комплекс, в котором используются простые элементы обработки данных, в основном параллельно соединены друг с другом. Элементы обработки данных выполняют очень простые логические или арифметические операции над своими входными данными. Основой функционирования искусственной нейронной системы является то, что с каждым элементом такой системы связаны весовые коэффициенты. Эти весовые коэффициенты представляют информацию, хранящуюся в системе.

Схема типового искусственного нейрона

Нейрон может иметь много входов, но только один выход. Человеческий мозг содержит примерно нейронов, и каждый нейрон может иметь тысячи соединений с другими. Входные сигналы нейрона умножаются на весовые коэффициенты и складываются для получения суммарного входа нейрона - I :
Рис. 1.Типовой искусственный нейрон Функция, которая связывает выход нейрона с его входами, называется функцией активизации. Она имеет вид сигмоидальнои функции θ . Формализация реакции нейрона состоит в том, что исходный сигнал направляется к одной из границ при получении очень маленьких и очень больших входных сигналов. Кроме того, с каждым нейроном связано пороговое значение - θ , которое в формуле вычисления выходного сигнала вычитается из общего входного сигнала. В результате, выходной сигнал нейрона - О часто описывается следующим образом: Структура сети с обратным распространением" src="https://libtime.ru/uploads/images/00/00/01/2014/06/27/set-s-obratnym-rasprostraneniyem.png" alt="Структура сети с обратным распространением" width="450" height="370"> Рис. 2. Сеть с обратным распространением Сеть с обратным распространением , как правило, делится на три сегмента, хотя могут быть сформированы также дополнительные сегменты. Сегменты (сегмент), находящиеся между входным и выходным сегментами, называются скрытыми сегментами, поскольку внешний мир воспринимает наглядно только входной и выходной сегменты. Сеть, которая вычисляет значение логической операции «исключающее ИЛИ», выдает на выходе истинное значение, только в случаях, когда не на всех ее входах есть истинные значения или не на всех входах являются ошибочные значения. Количество узлов в скрытом секторе могут варьироваться в зависимости от цели проекта.

Характеристики нейронных сетей

Следует отметить, что нейронные сети не требуют программирования в обычном смысле этого слова. Для обучения нейронных сетей применяются специальные алгоритмы обучения нейронных сетей, такие как встречное распространение и обратное распространение. Программист «программирует» сеть, задавая входные данные и соответствующие выходные данные. Сеть обучается, автоматически корректируя весовые коэффициенты для синаптических соединений между нейронами. Весовые коэффициенты, вместе с пороговыми значениями нейронов, определяют характер распространения данных по сети и, тем самым, задают правильный отклик на данные, используемые в процессе обучения. Обучение сети с целью получения правильных ответов может потребовать много времени. Насколько много зависит от того, какое количество образов должна быть усвоена в ходе обучения сети, а также от возможностей применяемых аппаратных и вспомогательных программных средств. Однако, по его завершении обучения сеть способна давать ответы с высокой скоростью. По своей архитектуре искусственная нейронная система отличается от других вычислительных систем. В классической информационной системе реализуется возможность соединения дискретной информации с элементами памяти. Например, обычно, информационная система сохраняет данные о конкретном объекте в группе смежных элементов памяти. Следовательно, возможность доступа и манипулирования данными достигается за счет создания взаимно однозначной связи между атрибутами объекта и адресами ячеек памяти, в которых они записаны. В отличие от таких систем, модели искусственных нейронных систем разрабатываются на основе современных теорий функционирования мозга, согласно которым информация представлена в мозге при помощи весовых коэффициентов. При этом непосредственной корреляции между конкретным значением весового коэффициента и конкретным элементом сохраненной информации не существует. Такое распределенное представление информации аналогично технологии сохранения и представления изображений, которая используется в голограммах. Согласно этой технологии линии голограммы действуют, как дифракционные решетки. С их помощью, при прохождении лазерного луча, воспроизводится сохраненное изображение, однако, сами данные не подвергаются непосредственной интерпретации.
Нейронная сеть как средство решения задачи. Нейронная сеть выступает в роли приемлемого средства решения задачи, когда присутствует большое количество эмпирических данных, но нет алгоритма, который был бы способен обеспечить получение достаточно точного решения с необходимой скоростью. В данном контексте технология представления данных искусственной нейронной системы имеет существенные преимущества перед другими информационными технологиями. Эти преимущества можно сформулировать следующим образом:
  1. Память нейронной сети является отказоустойчивой. При удалении отдельных частей нейронной сети происходит лишь снижение качества информации, в ней сохраняется, но не полное ее исчезновение. Это происходит потому, что информация хранится в распределенной форме.
  2. Качество информации в нейронной сети, которая подлежит сокращению, снижается постепенно, пропорционально той части сети, была удалена. Катастрофической потери информации не происходит.
  3. Данные в нейронной сети хранятся естественным образом с помощью ассоциативной памяти. Ассоциативной памятью называют такую память, в которой достаточно выполнить поиск частично представленных данных, чтобы полностью восстановить всю информацию. В этом состоит отличие ассоциативной памяти от обычной памяти, в которой получение данных осуществляется путем указания точного адреса соответствующих элементов памяти.
  4. позволяют выполнять экстраполяцию и интерполяцию на основе информации, хранящейся в них. То есть, обучение позволяет придать сети способности осуществлять поиск важных особенностей или связей в данных. После этого сеть в состоянии экстраполировать и выявлять связи в новых данных, что к ней поступают. Например, в одном эксперименте было проведено обучение нейронной сети на гипотетическом примере. После окончания обучения сеть приобрела способность правильно отвечать на вопросы, по которым обучение не проводилось.
  5. Нейронные сети - пластичны. Даже после удаления определенного количества нейронов может быть проведено повторное обучение сети до ее первичного уровня (конечно, если в ней осталась достаточное количество нейронов). Такая особенность является также характерной для мозга человека, в котором могут быть повреждены отдельные части, но со временем, с помощью обучения, достигнута первичного уровня навыков и знаний.
Благодаря таким особенностям искусственные нейронные системы становятся очень привлекательными для применения в роботизированных космических аппаратах, оборудовании нефтепромышленности, подводных аппаратах, средствах управления технологическими процессами и в других технических устройствах , которые должны функционировать длительное время без ремонта в неблагоприятной среде. Искусственные нейронные системы не только позволяют решить проблему надежности, но и предоставляют возможность уменьшить эксплуатационные расходы благодаря своей пластичности. Однако, в целом, искусственные нейронные системы не очень хорошо подходят для создания приложений, в которых требуются сложные математические расчеты или поиск оптимального решения. Кроме того, применение искусственной нейронной системы не будет лучшим вариантом в случае, если существует алгоритмическое решение, которое уже предоставило положительный результат вследствие практического применения для решения подобных задач. Похожая статья: