Пзу служит для хранения программ. Постоянное запоминающее устройство (ПЗУ или ROM). Стационарные запоминающие устройства

Постоянные запоминающие устройства (ПЗУ) в микропроцессорных вычислительных системах слу­жат для хранения программ и другой неизменяемой информации. Важное преимущество ПЗУ по сравне­нию с ОЗУ - сохранение информации при выключе­нии питания. Стоимость бита хранимой в ПЗУ инфор­мации может быть почти на порядок ниже, чем в ОЗУ. Постоянные ЗУ могут быть реализованы на основе различных физических принципов и элементов и отличаются способом занесения информации, крат­ностью занесения, способом стирания.

В настоящее время применяются следующие виды ПЗУ: программируемые на заводе-изготовителе или масочные ПЗУ (МПЗУ); программируемые пользова­телем ; перепрограммируемые ПЗУ . Первые два вида ПЗУ допускают только однократное про­граммирование, третий вид ПЗУ позволяет изменять хранимую в нем информацию многократно.

Рассмотрим подробнее каждый из типов ПЗУ.

Программируемые масочные ПЗУ про­граммируются их изготовителем, который по подго­товленной пользователем информации делает фото­шаблоны, с помощью которых заносит эту информа­цию в процессе производства на кристалл ПЗУ. Этот способ самый дешевый и предназначен для крупносе­рийного производства ПЗУ.

Масочные ПЗУ строятся на основе диодов, бипо­лярных и МДП-транзисторов. В диодных ПЗУ диоды включены в тех пересечениях матрицы, которые соот­ветствуют записи «1», и отсутствуют в местах, где должен быть записан «0». Внешние цепи управления диодных ПЗУ очень просты. Так как диодная матри­ца представляет собой элемент с гальваническими связями, то выходные сигналы имеют ту же форму, что и входные. Таким образом, если на входы пода­ются напряжения постоянных уровней, то и на выхо­дах уровни будут также постоянными, поэтому отпа­дает необходимость в выходном регистре для хране­ния информации. Масочные ПЗУ на биполярных и МДП-транзисторах также строятся в виде матриц. Постоянные ЗУ на МДП-транзисторах несколько проще в изготовлении, чем биполярные.

Масочные ПЗУ характеризуются большой надеж­ностью, но при их изготовлении возникает ряд не­удобств для заказчика и для изготовителя. Велика номенклатура ПЗУ и мала их тиражность, поэтому от изготовителя требуются повышенные затраты на фотошаблоны, что увеличивает стоимость ПЗУ. От­сутствует возможность оперативно изменять инфор­мацию в ПЗУ без изготовления новой ИС, что особен­но неудобно на этапе отработки программ системы.

Программируемые пользователем ПЗУ являются более универсальными и, следователь­но, более дорогими приборами. Они представляют собой матрицы биполярных приборов, связи которых с адресными и разрядными шинами разрушаются при занесении на специальных программирующих устрой­ствах соответствующих кодовых комбинаций. Эти устройства вырабатывают напряжения, необходимые и достаточные для пережигания плавких перемычек в выбранных запоминающих элементах ПЗУ. Воз­можность программирования пользователем сделала ПЗУ этого типа чрезвычайно удобными при разра­ботке микроЭВМ.

Наибольшее распространение получили ПЗУ с ультрафиолетовым стиранием серии К573, с плавки­ми перемычками серии К556 и К541, с электрическим стиранием и записью информации серий К558, К1601, К1609.

Во всех перечисленных типах запоминающих уст­ройств элементы, хранящие информацию, также рас­полагаются в виде ячеек двумерной матрицы. Каж­дая ячейка может хранить один бит информации, т. е. быть в состоянии логического «0» или «1». Физически на кристалле микросхемы ПЗУ ячейки располагаются на пересечении «словарных линий», идущих от де­шифратора, и разрядных линий, перпендикулярных словарным, которые подсоединяются ко входам муль­типлексора. На дешифратор и мультиплексор пода­ются разряды адреса. При подаче адреса на дешиф­ратор возбуждается одна из словарных линий и все запоминающие элементы, расположенные на ней, па­раллельно выдают хранящуюся в них информацию на все разрядные линии. Выборка нужного числа би- тов для подачи на выход микросхемы ЗУ осуществляется мультиплексором. В зависимости от организации микросхемы мультиплексор и дешифратор могут иметь различную разрядность. Например, микросхема емкостью (2X8) К бит может быть организована как матрица размером 128Х128, что означает использование внутри микросхемы дешифратора «1 - из-128» для возбуждения словарных линий и восьми мультиплексоров «16 - в - 1» для считывания разрядных Линий.

С учетом топологических и технологических особенностей каждого типа микросхем можно произвести деление матрицы запоминающих ячеек на блоки других размеров. Подобное построение запоминающих устройств является общим для всех типов. Отличия между ними - в организации запоминающих ячеек, располагающихся на пересечении «словарной» и «разрядных» линий.

Микросхемы с плавкими перемычками, выполненные по ТТЛ- или ТТЛШ-технологии, применяются там, где необходимо высокое быстродействие. На их основе создается память микропрограмм для микропроцессорных устройств с разрядно-модульной архитектурой (серия К589 й др.), устройства перемножения и функционального преобразования сигналов. Запоминающим элементом в микросхемах данного типа является я-р-/г-транзистор, подсоединенный базой к «словарной линии», коллектором к (Лъ а эмиттером, через плавкую перемычку, к «разрядной» линии. В качестве плавкой перемычки используется поликристаллический кремний или нихром, напыленные при изготовлении микросхемы.

Протекание тока программирования через нихро-мовую перемычку вызывает частичное испарение и окисление нихрома, это приводит к разрыву перемычки. Однако по истечении некоторого времени такая перемычка можёт восстановиться, поэтому - для повышения надежности программирования проводят электротермотренировку микросхем. Подобного недостатка лишены микросхемы с перемычками из поликристаллического кремния, в которых процесс необратимого перехода поликремния из проводящего состояния в непроводящее происходит под действием нагрева, вызванного протеканием тока.

При возбуждений «словарной линии» будут активизироваться (переходить в состояние «1») лишь те «разрядные» линии, к которым подсоединены транзисторы с невыплавленными перемычками. Таким образом, процесс программирования для микросхем данного типа сводится к удалению плавких перемычек в необходимых местах.

Схемы поддержки режима программирования обычно располагаются на самом кристалле микросхемы, и процесс программирования протекает следующим образом. На адресные входы подается адрес выбранной ячейки. Напряжение питания микросхемы повышается до напряжения программирования, необходимого для создания тока, достаточного для выплавления перемычки. Далее на выходах микросхемы путем задания тока указываются те разряды слова, -в которых будут выплавляться перемычки. В процессе занесения информации в микросхему необходимая последовательность подачи импульсов напряжения на определенные выводы обеспечивается программирующим устройством, которое параллельно контролирует правильность программирования, считывая информацию из ПЗУ. Постоянные ЗУ данного типа допускают только однократную запись информации в ячейку.

Микросхемы, в которых информация стирается с помощью ультрафиолетового излучения (УФППЗУ), имеют: возможность многократного программирования, достаточно малое время выборки и энергопотребление, большую емкость. Это делает их более предпочтительными для применения в качестве памяти микропроцессорных систем с сохранением информации после отключения питания. Микросхемы данного типа используются в блоках ПЗУ большинства микро- ЭВМ.

Запоминающим элементом в ПЗУ с УФ-стиранием является МОП-транзистор, расположенный на пересечении соответствующих «словарной» и «разрядной» линий. Информация о содержимом данной ячейки хранится в виде заряда на втором (плавающем) за­творе МОП-транзистора. Затвор называется плавающим, если он размещен между управляющим затво­ром данного транзистора и его каналом и окружен высокоомным диэлектриком.

Перепрограммируемые ПЗУ - это ПЗУ с изменяемым содержимым, на затворах матрицы МОП-транзисторов длительное время могут храниться заряды, образующие заданный код. Все перепрограммируемые ПЗУ представляют собой МОП-приборы.

При необходимости в перепрограммировании микросхемы предварительно записанную информацию стирают ультрафиолетовым светом через прозрачное кварцевое окошко на поверхности корпуса микросхемы. Попадая на плавающий затвор и выбивая из него фотоэлектроны, УФ-излучение разряжает плаваю­щий затвор МОП-транзистора. Время сохранения информации в микросхемах ПЗУ данного типа определяется качеством призатворного диэлектрика и для современных микросхем составляет десять лет и более.

Микросхемы ПЗУ с электрическим стиранием информации популярны у разработчиков микропроцессорной техники благодаря возможности быстрого сти­рания и записи, большим допустимым числом циклов перезаписи информации (10000 раз и более). Однако они достаточно дорогие и сложные по сравнению с микросхемами ПЗУ с УФ-стиранием и поэтому уступают последним по степени использования в микропро­цессорной аппаратуре.

Основу запоминающей ячейки в ПЗУ с электрическим стиранием составляет МОП-транзистор с плавающим затвором, такой же, как и в ПЗУ с УФ-стиранием. Но в микросхемах данного типа технологическими методами обеспечена возможность обратного туннели- рования, т.е. отбора электронов с плавающего затвора, что позволяет выборочно стирать занесенную информацию.

Кому-то кажется, что это очень простая информация, неужели по ней нужны дополнительные объяснения? Но есть люди, задающие вопрос «Постоянное запоминающее устройство служит для чего?», и это не редкость, поэтому хотелось бы внести немного ясности в отношении этой темы.

Что такое постоянное запоминающее устройство?

Постоянное запоминающее устройство служит для хранения данных, представленных в электронном варианте. Есть и другая, более понятная рядовому пользователю формулировка. Постоянное запоминающее устройство служит для хранения программ, которые используются на электронных устройствах. Зачастую изготавливается в виде прямоугольника, внутри которого есть необходимое аппаратное обеспечение, которое может обеспечить хранение ограниченного количества данных в условиях, когда не подаётся постоянное электрическое напряжение. Другими словами, ПЗУ имеют энергетически независимую память, в которой и хранятся необходимые данные. Если человек читает эти слова, то можно сделать заключение, что он уже использует ПЗУ, поскольку пользуется соответствующим девайсом. Если есть желание увидеть устройство воочию, то это вполне можно сделать. Как - зависит от девайса, с которого читают эту статью. Если с компьютера, то необходимо снять защитную панель с системного блока и посмотреть на переднюю часть компьютера. Там можно увидеть довольно небольшое устройство размером 20*10*4 сантиметра или около этого (внимание, сейчас разговор идёт о системном блоке компьютера, а не о ноутбуке, не перепутайте). ПЗУ выглядит как кусок черной пластмассы, окованный по бокам железными пластинами.

Итак, можно сказать, что служит для хранения ответов на все возможные вопросы, ведь именно там сберегается вся информация, которую пользователь сохраняет на своем компьютере. Но подробнее будут рассмотрены далее.

Какие они бывают?

По особенностями их использования можно выделить два вида ПЗУ:

  • Переносные. Сюда можно отнести те постоянные запоминающие устройства, которые удобно использовать при переноске от одного компьютера или электрического устройства к другому. Сюда можно отнести электронные накопительные книги, флеш-носители и много других подобных по функционалу устройств.
  • Стационарные. Эти устройства рассчитаны на то, что их один раз установят и будут пользоваться годами. То ПЗУ, что установлено в компьютер, принадлежит к этому виду.

Чем разнятся постоянные запоминающие устройства?

До недавнего времени основная и самая значительная разница между ними заключалась в количестве информации, которую можно записать. Так, основными носителями были магнитные ленты и производные от них - дискеты, которые имели памяти в сотни и тысячи раз меньше, чем жесткие диски компьютеров. Но шло время, и сейчас переносные ПЗУ по объему памяти не уступают стационарным, иногда являясь модифицированными под перенос жесткими дисками компьютера. Но даже сейчас сохранилась ощутимая разница:

  • Размер. Как правило, переносные запоминающие устройства всё же рассчитаны на меньший объем памяти, поэтому вполне закономерно, они меньше по размеру.
  • Различные типы подключения к самому компьютеру, а также места подключения: внешние и внутренние (снаружи системного блока и внутри него).
  • Скорость взаимодействия. Это, вероятно, замечали многие читатели. Если переброска файлов между папками на самом компьютере занимает секунды, то для переброски с внешнего устройства в память компьютера понадобятся минуты.

Переносные запоминающие устройства

К переносным запоминающим устройствам следует отнести такую электронику:

  • Электронные накопительные книги. Это постоянное запоминающее устройство служит для хранения огромнейших массивов данных. Так, эти книги по размеру соответствуют обычным книгам из бумаги, но количество данных, которое может быть размещено на них, впечатляет: это до 10 Терабайт (такие экземпляры есть в свободной продаже на момент написания статьи).
  • Диски на основе лазерной технологии (CD, DVD и прочее). Наверное, у многих можно найти небольшие коллекции таких носителей, на которых были игры или фильмы, а некоторые и сейчас, в эпоху интернета и свободного доступа к информации, покупают их для домашней коллекции.
  • Устройства на магнитной ленте (дискеты, сейчас практически не используются).
  • Электронные многоразовые носители данных, созданные с применением технологии "флеш" (в народе они известны как флешки). Небольшое постоянное запоминающее устройство служит для хранения данных размером до нескольких единиц или десятков гигабайт.

Стационарные запоминающие устройства

К ним относятся:

  • Жесткие диски, которые устанавливаются в компьютеры.
  • Целые информационные системы накопления информации, которые можно увидеть в огромных центрах накопления данных.

И сейчас, зная в целом и общем, для чего предназначены постоянные запоминающие устройства, не лишним будет узнать, какое устройство выбрать. Но чтобы избежать неприятного разочарования, нужно сначала разобраться в системе подсчёте данных. Дело в том, что такие устройства работают на двоичной системе, для которой важным является число 1024. Так уж получилось, что 1 гигабайт имеет 1024 мегабайтов, 1 мегабайт имеет 1024 килобайта и т. д. (это тема для отдельной статьи). А производители носителей иногда поступают нечестно и берут за основу число 1000, округляя значение. Вы можете купить флеш-носитель на 16 000 мегабайт и вам скажут, что это 16 гигабайт, а в реальности там будет всего 14,9 Гб. А теперь к советам:

  • При покупке всегда проверяйте, отвечает ли указанный номинал на накопителе реальному положению дел. Попросите продавца проверить на установленном в магазине компьютере. В магазинах, которые ценят клиентов, такая процедура предусмотрена регламентом, так что можете не волноваться и смело просить.
  • Осмотрите постоянное устройство на наличие внешних повреждений. Проверка на работоспособность из пункта №1 здесь тоже будет полезной.
  • Проверьте качество гнёзд. Если видны повреждения, выберите другой товар.
  • И всегда помните про в случае покупки некачественного товара.

И напоследок давайте повторим: постоянное запоминающее устройство служит для хранения чего? Данных, представленных в электронном виде. Надеемся, после прочтения этой статьи любой читатель сможет ответить на этот вопрос без всякой заминки.

ПОСТОЯННАЯ ПАМЯТЬ (ПЗУ)

Существует тип памяти, который хранит данные без электрического тока, именно постоянная память ROM (Read Only Memory), или иногда ее называют энергонезависимой памятью, применяемую для хранения системных и дополнительных программ, предназначенных для постоянного использования микропроцессором, которая не позволяет изменять или стирать информацию.

ПЗУ (постоянное запоминающее устройство) - микросхема на материнской плате, в которой находятся программы, данные, занесенные при изготовлении компьютера и используемые для внутреннего тестирования устройств после включения питания компьютера и загрузки операционной системы в оперативную память. Совокупность этих микропрограмм называется BIOS (Basic Input-Output System) - базовая система ввода-вывода. В BIOS содержится программа настройки конфигурации компьютера (SETUP). Она позволяет установить некоторые характеристики устройств компьютера (тип видеоконтроллера, жестких дисков и дисководов для дискет, часто также режимы работы с оперативной памятью, запрос пароля при начальной загрузке).

Данные записываются в ПЗУ в процессе производства. Для этого изготавливается трафарет с определенным набором битов, который накладывается на фоточувствительный материал, а затем части поверхности вытравливаются.

Различают:

ППЗУ (программируемые ПЗУ) были разработаны в конце 70-х годов компания под названием Texas Instruments. Другими словами в условиях эксплуатации есть возможность программировать. Такие ПЗУ обычно содержат массив крошечных перемычек. В которой есть возможность, пережечь определенную перемычку, выбрав нужные строку и столбец, а затем приложить высокое напряжение к определенному выводу микросхемы.

EPROM (стираемое программируемое ПЗУ), позволяют при использование специального аппарата, программировать в условиях эксплуатации и стирать информацию. Для этого чип подвергают воздействию сильного ультрафиолетового света с определенной длиной волны, в течении 15 минут.

EEPROM (Электронно - перепрограммированные ПЗУ), также стираемое ППЗУ, но в отличие от ППЗУ они позволяют перепрограммировать путем приложения импульсов и не требуют специальных дополнительных устройств. Но работают в 10 раз медленнее с гораздо меньшей емкостью и цена дороже.

Флеш-память, стирается и записывается по блокам. Производится на печатных платах, имеет емкость до нескольких десятков мегабайт.

Устанавливаемые на системной плате ПК модули и кассеты ПЗУ имеют емкость, как правило, не превышающую 128 Кбайт. Быстродействие у постоянной памяти меньшее, чем у оперативной, поэтому для повышения производительности содержимое ПЗУ копируется в ОЗУ, и при работе непосредственно используется только эта копия, называемая также теневой памятью ПЗУ (Shadow ROM).

«В настоящее время в ПК используются «полупостоянные», перепрограммируемые запоминающие устройства -- флэш-память. Модули, или карты, флэш-памяти могут устанавливаться прямо в разъемы материнской платы и имеют следующие параметры: емкость до 512 Мбайт (в ПЗУ BIOS используются до 128 Кбайт), время обращения по считыванию 0,035 -- 0,2 мкс, время записи одного байта 2 -- 10 мкс. Флэш-память -- энергонезависимое запоминающее устройство. Примером такой памяти может служить память NVRAM -- Non Volatile RAM со скоростью записи 500 Кбайт/с. Обычно для перезаписи информации необходимо подать на специальный вход флэш-памяти напряжение программирования (12 В), что исключает возможность случайного стирания информации. Перепрограммирование флэш-памяти может выполняться непосредственно с гибкого диска или с клавиатуры ПК при наличии специального контроллера, либо с внешнего программатора, подключаемого к ПК. Флэш-память бывает весьма полезной как для создания весьма быстродействующих, компактных, альтернативных НМД запоминающих устройств -- «твердотельных дисков», так и для замены ПЗУ, хранящего программы BIOS, позволяя прямо с «дискеты» обновлять и заменять эти, программы на более новые версии при модернизации ПК» [Электронный ресурс] URL:http://library.tuit.uz/skanir_knigi/book/vich_sistemi/viches_sist_2.htm (Дата обращения 15.05.2013)..

Сравнительная характеристика ОЗУ и ПЗУ

Таблица 2 Сравнительная характеристика.

«Физически для построения запоминающего устройства типа RАМ используют микросхемы динамической и статической памяти, для которых сохранение бита информации означает сохранение электрического заряда (именно этим объясняется энергозависимость всей оперативной памяти, то есть потеря при выключении компьютера всей информации, хранимой в ней).

Оперативная память физически выполняется на элементах динамической RАМ, а для согласования работы сравнительно медленных устройств (в нашем случае динамической RАМ) со сравнительно быстрым микропроцессором используют функционально для этого предназначенную кэш-память, построенную из ячеек статической RАМ. Таким образом, в компьютерах присутствуют одновременно оба вида RАМ. Физически внешняя кэш-память также реализуется в виде микросхем на платах, которые вставляются в соответствующие слоты на материнской плате» Николаева В.А. Информатика и информационные технологии. [Электронный ресурс] URL: http://www.junior.ru/wwwexam/pamiat/pamiat4.htm (дата обращение: 15.05.2013).

Возможно, кому-то покажется, что это достаточно простая информация, чем по ней требуются дополнительные объяснения? Однако существуют люди, которые задаются вопросом: «Для чего служит постоянное запоминающее устройство?». Стоит отметить, что это не редкость, поэтому следует внести некоторую ясность в отношении данной темы.


Что означает постоянное запоминающее устройство?

Оно необходимо для хранения данных, которые предоставляется в электронном виде. Существует и другая формулировка, более понятная обычному пользователю. Постоянное запоминающее устройство предназначено для хранения программ, использующихся на электронных аппаратах. Очень часто оно выполнено в форме прямоугольника, внутри которого присутствует требуемое аппаратное обеспечение, способное обеспечить хранение ограниченного числа данных при условиях, когда невозможна постоянная подача электрического напряжения. Таким образом, ПЗУ обладает энергетически независимой памятью, где хранятся требуемая информация.

Когда с компьютера следует изъять защитную панель, находящуюся на системном блоке, и посмотреть на переднюю часть аппарата. Там размещается небольшое устройство, имеющее размер 20*10*4 сантиметра или приблизительно к этому значению. Необходимо отметить, что в данный момент речь пойдет о системном блоке компьютера, а не о самом ноутбуке, поэтому не стоит путать. ПЗУ смотрится как участок черной пластмассы, который окован по бокам железными пластинами. Таким образом, можно предположить, что постоянное запоминающее устройство предназначено для хранения ответов на все вопросы, так как именно там сберегаются все данные пользователя на компьютере. Более подробная информация о таких носителях будет рассматриваться далее.

Какие бывают постоянные запоминающие устройства? По особенностям использования выделяется два вида ПЗУ:

1. Переносные (применяются при переноске от одного устройства к другому). Это электронные накопительные книги, флеш-носители и прочее.
2. Стационарные (рассчитаны на однократную установку и использование на протяжении долгих лет).

ПЗУ, установленное в компьютер, относится именно ко второму виду.

В чем состоят отличия постоянных запоминающихся устройств?

Совсем недавно главная и самая существенная разница между ними наблюдалась в количестве записываемой информации. Таким образом, основными носителями были представлены магнитные ленты, а также производные от них. К ним относятся дискеты, обладающие памятью в сотни и тысячи раз меньше, если сравнивать с жесткими компьютерными дисками. С течением времени и до сегодняшнего дня переносные постоянные запоминающие устройства по объему памяти не отличаются от стационарных.

Иногда они являются модифицированными под перенос жесткими носителями компьютера. Однако и сейчас сохранилась существенная разница. В первую очередь стоит отметить размер. Обычно переносные постоянные запоминающие устройства рассчитаны на меньший объем памяти. Таким образом, они меньше по размеру, что вполне логично. Кроме того, следует указать на разные типы подключения к компьютеру.

Также места этого подключения могут отличаться. Среди них стоит выделить внешние и внутренние подключения, то есть снаружи и внутри системного блока. Различия также наблюдаются и в скорости взаимодействия, что, наверняка, замечали пользователи. Файлы между папками на компьютере перебрасываются за секунды, в то время как данный процесс, осуществляемый с внешнего устройства в память компьютера, требует нескольких минут.

Что входит в число переносных запоминающихся устройств?

К переносным запоминающим устройствам относится следующее:

Электронные накопительные книги;
диски на основе лазерной технологии;
устройства на магнитной ленте;
электронные многоразовые носители информации.

Электронные накопительные книги предназначены для хранения больших массивов данных. Таким образом, размеры данных книг соответствуют обыкновенным книгам, сделанным из бумаги, однако количество данных, размещенное на них, достаточно впечатлительно. Оно составляет до 10 Терабайт. К дискам на основе лазерной технологии относятся CD, DVD и другие.

Наверняка, у большинства пользователей имеются небольшие коллекции подобных носителей, где хранятся игры или фильмы. Некоторые люди даже приобретают их для пополнения домашней коллекции. Устройства на магнитной ленте, то есть дискеты, на сегодняшний день почти не используются. Электронные многоразовые носители информации, которые созданы с применением технологии «флеш», в народе имеют названия флешки. Это запоминающее устройство обладает небольшими размерами и предназначено для хранения данных, объемом до нескольких единиц или десятков гигабайт.

Стационарные запоминающие устройства В их число стоит отнести следующее:

Жесткие диски, устанавливаемые в компьютеры.
целые информационные системы накопления данных, которые легко обнаружить в больших центрах накопления информации.

Рекомендации при выборе ПЗУ

Даже в настоящий момент, зная в общем, для чего используются постоянные запоминающие устройства, актуальным остается вопрос о том, какое устройство выбрать. Чтобы избежать разочарования, необходимо сначала подробно разобраться в системе подсчёта данных. Все дело в том, что подобные устройства функционируют на двоичной системе.

Как известно, для нее важно число 1024. Стоит отметить, что 1 гигабайт содержит 1024 мегабайтов, а 1 мегабайт равен 1024 килобайтам. Также нужно заметить, что порой производители носителей поступают не совсем честным образом и берут за основу значение 1000, округляя данный показатель. Таким образом, при покупке флеш-носителя на 16 000 мегабайт продавцы скажут, что это 16 гигабайт. На самом же деле там будет лишь 14,9 Гб.

Ну а теперь необходимо перейти и к самим рекомендациям. Они следующие:

1. При покупке стоит обязательно проверить, соответствует номинал, указанный на накопителе, реальному положению дел.
2. Рекомендуется произвести осмотр постоянного устройства хранения данных на наличие различного рода повреждений.
3. Следует проверить на работоспособность устройство.
4. Необходимо выполнить проверку качества гнёзд. В случае, когда визуально определяются повреждения, желательно выберите другой товар.
5. Если достался товар низкого качества, не стоит забывать про права покупателя.

Что касается первого пункта рекомендаций, необходимо попросить продавца выполнить проверку на компьютере, который установлен в самом магазине. Там, где ценят клиентов, данная процедура предусмотрена регламентом, поэтому можно не по этому поводу. В противном случае рекомендуется выбрать другой магазин.

В конце хотелось бы еще раз повториться: постоянное запоминающее устройство предназначено для хранения данных, которые представлены в электронном виде. Возможно, данная статья поможет пользователям дать ответы на многие вопросы, которые возникали ранее, а также позволит правильно использовать постоянное запоминающее устройство.

ПЗУ - быстрая, энергонезависимая память, которая, предназначенная только для чтения. Информация заносится в нее один раз (обычно в заводских условиях) и сохраняется постоянно (при включенном и выключенном компьютере). В ПЗУ хранится информация, присутствие которой постоянно необходимо в компьютере. Комплект программ, находящийся в ПЗУ образовывает базовую систему ввода/вывода BIOS (Basic Input Output System). BIOS (Basic Input Output System - базовая система ввода-вывода) - совокупность программ, предназначенных для автоматического тестирования устройств после включения питания компьютера и загрузки операционной системы в оперативную память.

В ПЗУ находятся:

Тестовые программы, проверяющие при каждом включении компьютера правильность работы его блоков;

Программы для управления основными периферийными устройствами - дисководом, монитором, клавиатурой;

Информация о том, где на диске расположена операционная система.

Типы ПЗУ:

ПЗУ с масочным программированием это память, в которую информация записана раз и навсегда в процессе изготовления полупроводниковых интегральных схем. Постоянные запоминающие устройства применяются только в тех случаях, когда речь идет о массовом производстве, т.к. изготовление масок для интегральных схем частного применения обходится весьма недешево.

ППЗУ (программируемое постоянное запоминающее устройство).

Программирование ПЗУ – это однократно выполняемая операция, т.е. информация, когда-то записанная в ППЗУ, впоследствии изменена быть не может.

СППЗУ (стираемое программируемое постоянное запоминающее устройство). При работе с ним, пользователь может запрограммировать его, а затем стереть записанную информацию.

ЭИПЗУ (электрически изменяемое постоянное запоминающее устройство). Его программирование и изменение осуществляются с помощью электрических средств. В отличии от СППЗУ для стирания информации, хранимой в ЭИПЗУ, не требуется специальных внешних устройств.

Наглядно ОЗУ и ПЗУ можно представить себе в виде массива ячеек, в которые записаны отдельные байты информации. Каждая ячейка имеет свой номер, причем нумерация начинается с нуля. Номер ячейки является адресом байта.

Центральный процессор при работе с ОЗУ должен указать адрес байта, который он желает прочитать из памяти или записать в память. Разумеется, из ПЗУ можно только читать данные. Прочитанные из ОЗУ или ПЗУ данные процессор записывает в свою внутреннюю память, устроенную аналогично ОЗУ, но работающую значительно быстрее и имеющую емкость не более десятков байт.

Процессор может обрабатывать только те данные, которые находятся в его внутренней памяти, в ОЗУ или в ПЗУ. Все эти виды устройства памяти называются устройствами внутренней памяти, они обычно располагаются непосредственно на материнской плате компьютера (внутренняя память процессора находится в самом процессоре).


Кэш-память. Обмен данными внутри процессора происходит намного быстрее, чем обмен данными между процессором и оперативной памятью. Поэтому, для того чтобы уменьшить количество обращений к оперативной памяти, внутри процессора создают так называемую сверхоперативную или кэш-память. Когда процессору нужны данные, он сначала обращается к кэш-памяти, и только тогда, когда там отсутствуют нужные данные, происходит обращение к оперативной памяти. Чем больше размер кэш-памяти, тем большая вероятность, что необходимые данные находятся там. Поэтому высокопроизводительные процессоры имеют повышенные объемы кэш-памяти.

Различают кэш-память первого уровня (выполняется на одном кристалле с процессором и имеет объем порядка несколько десятков Кбайт), второго уровня (выполняется на отдельном кристалле, но в границах процессора, с объемом в сто и более Кбайт) и третьего уровня (выполняется на отдельных быстродействующих микросхемах с расположением на материнской плате и имеет объем один и больше Мбайт).

В процессе работы процессор обрабатывает данные, находящиеся в его регистрах, оперативной памяти и внешних портах процессора. Часть данных интерпретируется как собственно данные, часть данных - как адресные данные, а часть - как команды. Совокупность разнообразных команд, которые может выполнить процессор над данными, образовывает систему команд процессора. Чем больше набор команд процессора, тем сложнее его архитектура, тем длиннее запись команд в байтах и тем дольше средняя продолжительность выполнения команд.