Собрать самодельное зарядное устройство из компьютерного бесперебойника. Мир периферийных устройств пк. Конструктивное исполнение зарядного устройства

Для зарядки аккумулятора обязателен надежный источник питания. Достаточно надежны зарядные устройства на составных транзисторах. Простой, но мощный источник питания, собранный на мощных составных транзисторах КТ947, КТ827 годиться не только для зарядки
автомобильных аккумуляторов, а также для питания электроприборов. Установив конденсаторы, обозначенные на схеме пунктиром, можно использовать зарядное устройство как блок питания.

Конструктивно диоды и транзисторы можно разместить на большом общем радиаторе без изолирующих прокладок, ведь катоды диодов и коллекторы транзисторов электрически соединены между собой.

Возникла проблема с отсутствием трансформатора со средним отводом между двумя обмотками на 16В, тогда можно реализовать схему с выпрямительным мостом.

В этой схеме резистор R1 в 1Ом нужен для защиты составного транзистора КТ837, КТ814 от короткого замыкания на выходе. Наматывается этот резистор проволокой из нихрома.

Применение амперметра при заряжании батарей очень важно, так как только по току можно правильно контролировать зарядку аккумуляторов. Следует помнить, что допустимый максимальный ток зарядки равен емкости аккумулятора деленной на 10.

Собранные по предложенным схемам зарядные устройства обеспечат регулировку напряжения на выходе от 0 до 15В, и максимальный ток зарядки до 10 А.

Выбор преобразователя напряжения.

Инверторный преобразователь напряжения разумнее будет прибрести заводского производства.

Лучше всего купить автомобильный преобразователь, такие устройства мощные и при этом очень компактные и портативные. Автомобильные инверторы имеет защиту от перегрузки и индикатор или звуковой сигнал, срабатывающий при низком заряде батареи.


Автомобильный преобразователь напряжения пригодиться вам не только для самодельного бесперебойника. С ним вы сможете в машине включить компьютер, и не только компьютер!

Многие автомобильные преобразователи конвертируют постоянное напряжение 12В в переменное 220В, 50Гц. Остается только определиться с мощностью преобразователя.

Конечно же, все «внутренности» компьютера не работают одновременно, и в среднем потребление компьютером не превышает 100 Вт. Даже если учесть, что случаются пики потребления, то все равно блок питания компьютера не нагружается на полную мощность. Поэтому, чтобы безопасно завершить работу компьютера будет достаточно мощности бесперебойника в 200 Вт.

Цена на автомобильные преобразователи в 200 Вт составляет в среднем 1100 руб., на 300 Вт – 1400 руб., на 500 Вт – 1700 руб.

Самодельный бесперебойник для компьютера Схема построения ИБП с двойным преобразованием (Online) СИП для воздушных линий

Самой главной функцией, выполняемой источником бесперебойного питания, является функция обеспечения электроэнергией подключенной к нему нагрузки в момент пропадания сетевого питающего напряжения. Как известно, для этих целей в состав любого UPS входит аккумуляторная батарея и инвертор, обеспечивающий преобразование постоянного тока аккумулятора в переменный ток, требующийся для питания нагрузки. Эти компоненты, безусловно, являются важнейшими в составе любого UPS, но и еще без одного элемента невозможно представить себе ни один источник бесперебойного питания. Это – зарядное устройство, на которое, кстати сказать, приходится достаточно высокий процент от всех отказов UPS.

Основной функцией зарядного устройства, входящего в состав UPS, является обеспечение зарядки аккумуляторной батареи и дальнейшее поддержание этого заряда на соответствующем уровне. Функционирование зарядного устройства, т.е. подзарядка аккумулятора осуществляется в те периоды времени, когда на входе UPS имеется сетевое питающее напряжение. Конечно же, схемотехника и основные характеристики зарядного устройства определяется целым рядом параметров:

- типом (классом, топологией) источника бесперебойного питания (интерактивный, резервный, феррорезонансный, On-Line и т.п.);

- выходной мощностью UPS;

- количеством аккумуляторных батарей в составе UPS;

- типом используемых аккумуляторных батарей;

- ценой UPS;

- предпочтениями разработчиков.

Именно многообразие факторов, влияющих на выбор топологии зарядного устройства, привело к тому, что в современных источниках бесперебойного питания мы встретим несколько, совершенно различных, вариантов схемотехники зарядных устройств.

Попытка классифицировать зарядные устройства привела к тому, что мы предлагаем выделить следующие базовые варианты схемотехники зарядных устройств:

- линейные регуляторы напряжения и тока;

- импульсные DC-DC-преобразователи напряжения;

- импульсные однотактные источники напряжения;

- двухтактная мостовая выпрямительная схема, совмещенная с инвертором.

Мы не претендуем на полноту предложенной классификации, но дальнейший наш обзор призван показать на реальных примерах, что выделенные нами варианты схемотехники используются в подавляющем большинстве современных источников бесперебойного питания.

Прежде чем переходить к обзору схемотехнических особенностей различных вариантов зарядных устройств, скажем о том, что величина зарядного напряжения аккумуляторных батарей, т.е. величина выходного напряжения зарядного устройства зависит, в первую очередь, от количества аккумуляторов в составе UPS. Эта зависимость отражена в табл.1.

Таблица 1. Зависимость величины зарядного напряжения от количества батарей

Количество батарей

от 13.2В до 14В

от 26.7В до 28.5В

от 53.4В до 57.0В

Работоспособность зарядного устройства и правильность формирования им напряжения, заряжающего аккумуляторы, можно проверить следующим образом:

1. Подключить UPS к сети переменного тока с номинальным значением напряжения (230В).

2. Открыть крышку, закрывающую аккумуляторные батареи и обеспечить свободный доступ к клеммам на батареях, к которым подключены провода (красный провод и черный провод) от основной платы. Подобную процедуру очень легко проделать в устройствах APC Smart-UPS. В других моделях APC и в UPS других производителей придется подумать, как обеспечить доступ к клеммам аккумуляторной батареи.

3. Включить UPS и дождаться окончания процедуры самотестирования UPS, которая может занять 8-15 секунд. После окончания самотестирования, UPS переходит в режим работы от сети (On-Line) о чем обычно сообщает соответствующий индикатор (чаще всего, зеленого цвета).

4. Отсоединить от аккумуляторных батарей черный провод затем красный провод.

5. Измерите напряжение постоянного тока между черным и красным проводом.

6. Измеренное напряжение и является зарядным напряжением аккумуляторной батареи, формируемым зарядным устройством. Значение этого напряжения зависит о модели UPS и от количества аккумуляторных батарей, используемых в этой модели. Типовые значения этого напряжения представлены в табл.1. Но здесь нужно иметь в виду, что некоторые дешевые и примитивные модели источников бесперебойного питания могут выключаться при отсоединении аккумуляторной батареи.

7. Если измеренное напряжение не находится в заданном диапазоне, то это говорит о неисправности основной платы UPS, и в частности – о неисправности схемы заряда аккумуляторов.

Кроме количества аккумуляторов, на величину зарядного напряжения и зарядного тока могут влиять еще и такие факторы, как:

- окружающая температура;

- метод заряда аккумулятора.

Напряжение на элементе свинцово-кислотной батареи составляет 2.2 В . Среди всех типов аккумуляторов, свинцово-кислотные отличаются наименьшей энергетической плотностью. В них отсутствует «эффект памяти». Их продолжительный заряд не станет причиной выхода батареи из строя.

Для алгоритма заряда свинцово-кислотных батарей более критичным является ограничение напряжения, чем ограничение тока заряда. Время заряда герметичных свинцово-кислотных батарей составляет 12 – 16 часов . Если увеличить ток и применить методы многоступенчатого заряда, его можно сократить до 10 ч и менее. Но в большинстве моделей UPS на такие усложнения не идут, предпочитая использовать более простые схемы заряда аккумуляторов.

По своему назначению, свинцово-кислотные батареи, как, впрочем, и другие типы аккумуляторов (например, никель-кадмиевые), можно разделить на две большие группы:

1) Батареи циклического применения, т.е. батареи, используемые как основной источник питания и для которых характерны повторяющиеся циклы заряд/разряд.

2) Батареи, работающие в буферном режиме, используемые в резервных источниках питания.

Соответственно этому делению различаются и возможные методы заряда аккумуляторов. Для батарей циклического применения используются методы заряда при постоянном напряжении заряда и при постоянных значениях напряжения и тока заряда. Для буферных батарей используется метод двухступенчатого заряда:

- во-первых, метод заряда при постоянном напряжении заряда;

- во-вторых, метод компенсирующего заряда (струйная или капельная подзарядка).

Для заряда буферных батарей возможно использование в качестве самостоятельных, методов, входящих в состав двухступечатого заряда, т.е. они могут заряжаться, как постоянным напряжением, так и методом компенсирующего заряда.

Для лучшего понимания схем зарядных устройств, разберем основные методы заряда свинцово-кислотных батарей, используемые в источниках бесперебойного питания.

Метод заряда при постоянном напряжении заряда

При таком методе заряда к выводам батареи прикладывается постоянное напряжение из расчета 2.45 В на элемент при температуре воздуха 20 – 25 °С , т.е. к батарее с 6-ю элементами (12-вольтовые аккумуляторы) в этом случае должно прикладываться напряжение 14.7В . Но это в теории, на практике же все обстоит несколько иначе. Величина этого напряжения может незначительно отличаться для различных типов батарей от разных производителей. В технической документации на аккумуляторные батареи четко указывают значение напряжения заряда и информацию по его поправкам для тех случаев, когда температура окружающей среды отличается от нормальной (25°С ). Необходимо отметить, что в реальных устройствах это напряжение тоже может незначительно отличаться, в зависимости от того, какой режим заряда батареи решил использовать производитель UPS. В сервисной документации на UPS должна быть представлена информация о величине зарядного напряжения для каждой конкретной модели источника бесперебойного питания. Подобные данные для UPS такого производителя, как APC представлены в табл.2 . А вот что же должно быть в источниках других моделей и других брендов, к сожалению, можно выяснить лишь опытным путем, работая с абсолютно исправными устройствами.

Таблица 2. Величина зарядного напряжения некоторых моделей ИБП компании APC

Модель UPS фирмы APC

Выходное напряжение зарядного устройства

Back-UPS 250EC/250 EI

13 . 8 (±0.5) VDC

Back-UPS 400 EC/EI/MI

13 . 8 (±0.5) VDC

Back-UPS 600 EC

13 . 8 (±0.5) VDC

Back-UPS 200

от 13.75 до 13 . 8 VDC

Back-UPS 250 (BK250)

13.76 (±0.2) VDC

Back-UPS 360/450/520

от 13.75 до 13 . 8 VDC

Back-UPS 400/450 (BK400/450)

13.76 (±0.2) VDC

Back-UPS 600 (BK600)

13.76 (±0.2) VDC

Back-UPS 900/1250 (BK900/1250)

27.60 (±0.2) VDC

Back-UPS AVR 500I / 500IACH

13.6 (±3%) VDC

Back-UPS PRO 280/300J/420

13.6 (±3%) VDC

Back-UPS PRO 500J/650

13.6 (±3%) VDC

Back-UPS PRO 1000

от 26 . 7 до 28 . 5 VDC

Back-UPS PRO 1400

13.6 (±3%) VDC

Smart-UPS 450/700

от 26 . 7 до 28 . 5 VDC

Smart-UPS 1000/1400

от 26 . 7 до 28 . 5 VDC

Smart-UPS 2200 RM/RMI/RM3U/RM3UI

от 53.4 до 57.0 VDC

Smart-UPS 3300 RM/RMI/RM3U/RM3UI

от 53.4 до 57.0 VDC

Smart-UPS 250 (1G и 2G)

от 20.4 до 21.2 VDC

Smart-UPS 370/400 (1G и 2G)

от 27.05 до 27.9 VDC

Smart-UPS 600 (1G и 2G)

27.60 (±0.2) VDC

Smart-UPS 900/1250 (1G и 2G)

27.60 (±0.2) VDC

Smart-UPS 2000 (1G и 2G)

55.1 (±0.55) VDC

Smart-UPS RM 700/1000/1400

27.60 (±0.27) VDC

Matrix - UPS

55.3 (±0.5) VDC

Заряд считается завершенным, если ток заряда остается неизменным в течение трех часов. Если не осуществлять контроль за постоянством напряжения на батарее, может наступить ее перезаряд. В результате электролиза, из-за того, что негативные пластины перестают активно поглощать кислород, вода электролита начинает разлагаться на кислород и водород, испаряясь из батареи. Уровень электролита в батарее снижается, что приводит к ухудшению протекания в ней химических реакций, и ее емкость будет уменьшаться, а срок службы – сокращаться. Поэтому заряд таким методом должен протекать при обязательном контроле напряжения и времени заряда, что позволит увеличить срок службы батареи.

На этот метод заряда следует обратить внимание, как на самый простой. Ранее в отечественной литературе при заряде негерметичных свинцово-кислотных батарей считалось нормой производить их заряд начальным током, равным 0.1С в течение 8 – 12 часов при напряжении заряда из расчета 2.4 В на элемент батареи.

На рис.1 в качестве примера показаны характеристики заряда 12-вольтовых свинцово-кислотных батарей, разряженных на 50 % и 100 %. Степень разряда определяется напряжением конца разряда на батарее.

Рис.1 Характеристики заряда 12-вольтовых свинцово-кислотных батарей

При заряде постоянным напряжением, зарядное устройство должно иметь таймер для отключения батареи по окончании заряда или другое устройство, обеспечивающее контроль времени или степени заряда батареи и выдающее сигнал отключения управляющему устройству. Эту функцию в современных источниках бесперебойного питания выполняет микропроцессор, который осуществляет контроль заряда батареи. Ограничение времени заряда позволяет избежать как ее недостаточного заряда, так и перезаряда. Следует помнить, что прерывание заряда сокращает срок службы аккумуляторной батареи.

Нельзя заряжать полностью заряженную батарею - перезаряд может привести к ее порче. При цикличной эксплуатации батареи время заряда не должно превышать 24 часов.

Метод двухступенчатого заряда при постоянном напряжении заряда

Метод двухступенчатого заряда при постоянном напряжении заряда, как и следует из его названия, происходит в два этапа:

- сначала заряд при более высоком напряжении заряда;

- а затем заряд при более низком напряжении заряда (струйный или компенсирующий заряд).

Работу зарядного устройства поясняет график характеристики заряда (рис.2). Заряд начинается с подачи на батарею повышенного напряжения заряда. При этом ток начала заряда выбирают, как правило, равным 0.15 С, а время первого этапа заряда – около 10 ч. По мере заряда батареи ток заряда уменьшается, и, когда его значение достигнет определенной величины, зарядное устройство перейдет в режим струйной подзарядки малым током (обычно 0.05С ).

Рис.2 Метод двухступенчатого заряда при постоянном напряжении заряда

При двухступенчатом заряде начальный ток первого этапа не должен превышать значения 0.4С , а ток струйной подзарядки – 0.15С . Типовые значения напряжений заряда при различных температурах окружающей среды для 12-вольтового аккумулятора приведены в табл.3 .

Этап заряда

Типовое значение напряжения заряда , В

С

25° С

40° С

Основной

15.4

14.7

14.2

Компенсирующий

14.1

13.7

13.4

Важным преимуществом данного метода является сокращенное время заряда батареи при переходе из рабочего режима в дежурный, до состояния струйной (компенсационной) подзарядки при малой величине тока заряда.

Метод компенсирующего заряда

Метод компенсирующего заряда, который называют также методом струйной подзарядки, обычно применяют на заключительной стадии процесса заряда. Однако применяют его и как самостоятельный метод заряда при заряде свинцово-кислотных аккумуляторных батарей, работающих в дежурном режиме, т.е. в качестве резервного источника питания. В таком источнике в случае сбоя основного источника в работу вступает аккумуляторная батарея. Если ее разряд был непродолжительным, и емкость снизилась незначительно, то для заряда будет достаточен компенсирующий заряд батареи, который обеспечит постепенное восстановление ее рабочей емкости. Однако при глубоком разряде потребуется применение другого зарядного устройства, способного обеспечить достаточно высокий ток заряда. В случае глубокого разряда и последующей за ним струйной подзарядке может произойти сульфатация пластин батареи со всеми вытекающими последствиями. Выход из положения может заключаться в недопущении глубокого разряда, что обеспечивается микропроцессором UPS, следящим за уровнем разряда батареи.

При компенсирующем заряде следует также учитывать, что длительный заряд при незначительных колебаниях напряжения заряда существенно снижает срок службы батареи. Поэтому должна быть предусмотрена его стабилизация. Желательно, чтобы отклонение напряжения заряда от нормы не превышало ±1 % . Кроме того, поскольку зарядные характеристики в значительной степени зависят от температуры окружающей среды, зарядное устройство должно иметь схему термокомпенсации.

Нельзя утверждать, что компенсирующий заряд столь полезен для свинцово-кислотных батарей, потому что этот метод обычно используют в двух случаях: при их незначительном разряде и для подзарядки заряженных батарей с целью компенсации их саморазряда.

Для свинцово-кислотных аккумуляторов недопустим недостаточный заряд, т. к. это приводит к сульфатации отрицательных пластин. Но в равной степени, недопустим и перезаряд, вызывающий коррозию положительных пластин. При компенсирующем заряде, если он продлится слишком долго, начнется перезаряд батареи и, кроме того, будет происходить вскипание электролита.

Итак, из всего вышесказанного, можно сделать вывод о том, что в наиболее массовых источниках бесперебойного питания используются самые простые методы заряда – метод заряда постоянным напряжением и метод компенсирующего заряда.

Еще необходимо отметить, что при выборе значения напряжения заряда необходимо учитывать температуру окружающей среды: при ее высоких значениях требуется напряжение немного уменьшить, а при низких – увеличить. Именно поэтому в хороших зарядных устройствах, предназначенных для эксплуатации в широком диапазоне температур, имеется специальная схема, контролирующая температуру окружающей среды и обеспечивающая установку напряжения компенсирующего заряда в соответствии с ее значением.

В принципе, говорить обо всех особенностях аккумуляторных батарей и их зарядных устройств, можно еще достаточно долго, но все-таки вернемся к теме нашей публикации и начнем знакомство с практическими вариантами зарядных устройств. Но вся приведенная здесь информация, надеемся, поможет нашим читателям лучше понять все то, что будет представлено далее.

Зарядные устройства на базе линейных регуляторов напряжения

Зарядные устройства в виде линейных регуляторов напряжения на сегодняшний день очень редко используются компанией APC в своих источниках бесперебойного питания. Линейные регуляторы широко использовались в моделях первого (1G) и второго (2G) поколений, и их использование чаще всего было характерно для моделей с небольшой выходной мощностью.

Что же касается других производителей, то они до сих пор продолжают использовать линейные регуляторы в качестве зарядных устройств, т.к. имена эта топология является наиболее простой как в проектировании, так и в практической реализации.

Блок–схема зарядного устройства на базе линейного регулятора напряжения представлена на рис.3, который и демонстрирует всю простоту схемы. Обязательным элементом схемы является понижающий низкочастотный трансформатор. В качестве которого, кстати, может использоваться основной силовой трансформатор источника бесперебойного питания. В этом случае в трансформаторе имеется дополнительная понижающая обмотка. Такое решение позволяет избежать применения отдельного трансформатора, что позволяет снизить и стоимость, и массу UPS.

Рис.3 Архитектура зарядного устройства ИБП (линейный регулятор)

Преобразование переменного напряжения в постоянное, традиционно, осуществляется выпрямителем на базе диодного моста, с которого выпрямленное напряжение поступает на схему регулятора-стабилизатора.

Режим работы регулятора напряжения может определяться двумя схемами:

- схемой ограничения тока стабилизатора;

- схемой термической регулировки.

Обе эти схемы являются опциональными и их наличие характерно для зарядных устройств более высокого класса. В простейших зарядных устройствах, работающих в режиме заряда постоянным напряжением, они чаще всего отсутствуют.

Включение и выключение регулятора напряжения осуществляется микропроцессором (или другим контроллером, выполняющим функцию главной управляющей микросхемы UPS) посредством сигнала ON/OFF . Включение и выключение зарядного устройства осуществляется микропроцессором, который анализирует состояние сигнала уровня заряда аккумулятора и сигнала AC-OK (сигнала наличия на входе UPS переменного сетевого напряжения).

Подавляющим большинством разработчиков UPS используется микросхема LM317 в качестве основы линейного регулятора зарядного напряжения. Эта универсальная микросхема трехвыводного стабилизатора положительного напряжения, позволяющая проектировать стабилизаторы с выходным напряжением от 1.2В до 37В и током нагрузки до 1.5А . Мы не будем сейчас распространяться по поводу LM317, ведь любой желающий найдет о ней самую подробную информацию как через Internet, так и в отечественных справочниках по зарубежной элементной базе. Единственное, на чем хотелось бы остановиться, так это на особенностях включения стабилизатора и методах программирования уровня выходного напряжения.

Стабилизатор LM317 удобен тем, что требуют всего двух внешних резисторов для задания уровня выходного напряжения. Кроме того, показатели нестабильности по току нагрузки и напряжению у LM317 гораздо лучше, чем у стабилизаторов с фиксированным выходным напряжением. LM317 имеет встроенную схему защиты от перегрузки, схему ограничения тока, схему защиты от перегрева, схему защиты от несоблюдения области безопасной работы.

Конфигурация внешних резисторов и направление токов, протекающих через выводы LM317, показаны на рис.4. Стабилизатор обеспечивает опорное напряжение Vref = 1.25 В (напряжение между выходным и управляющим выводами). Это опорное напряжение прикладывается к задающему ток резистору R1 . Значение же выходного напряжения определяется по формуле (1):

Vout=Vref(1+R2/R1)+I ADJ R2 (1)


Рис.4 Стабилизатор LM317

Ток через управляющий вывод не превышает значения 100мкА и в данной формуле входит в слагаемое, определяющее погрешность. Поэтому при разработке стабилизатора ток I ADJ стремятся предельно снизить, и, таким образом, уменьшить, насколько это возможно, изменения выходного напряжения и тока нагрузки. Для этой цели, весь ток потребления протекает через выходной вывод микросхемы, определяя минимально необходимый ток нагрузки. Если нагрузка на выходе не достаточна, то выходное напряжение будет расти. Для предотвращения этого явления в зарядных устройствах вводится следящая цепь, которая при увеличении выходного напряжения (а это может происходить по мере заряда аккумуляторов) корректирует номиналы резистивного делитель, и, в частности, эквивалентное сопротивление резистора R2. Пример такой следящей связи представлен на рис.5. В представленной схеме датчиком выходного напряжения является резистивный делитель R4/R5 . Увеличение выходного напряжения приводит к открыванию транзистора Q1 и подключению резистора R3 параллельно резистору R2 . В результате, эквивалентное сопротивление резистора R2 уменьшается, что приводит к снижению величины выходного напряжения. Аналогичным образом можно компенсировать и величину зарядного напряжения при изменении окружающей температуры. Для этого вместо резистора R5 достаточно установить терморезистор.

Рис.5 Следящая цепь позволяет предотвращать изменение выходного напряжения и тока нагрузки

Ни один из выводов микросхемы не должен быть подключен к "земле" в обязательном порядке. Подключение к "земле" осуществляется через соответствующий делитель. Поэтому данный стабилизатор, как говорят, имеет "плавающие" относительно "земли" потенциалы выводов. Как результат этого, с помощью LM317 могут стабилизироваться напряжения в несколько сотен вольт, при условии, что не будет превышен допустимый предел разности напряжений между входом и выходом (максимальное значение разности не должно превышать 40В ).

Необходимо отметить, что микросхема LM317 удобна для создания не только линейных стабилизаторов с программируемым выходным напряжением, но и для создания простых регулируемых импульсных стабилизаторов, хотя именно такое решение в источниках бесперебойного питания, практически, не встречается.

Подключение управляющего вывода ADJ (конт.2) к «земле» приводит к тому, что выходное напряжение стабилизатора задается на уровне 1.2 В , при котором большинство нагрузок начинает потреблять мизерный ток, т.е., фактически, нагрузка выключается. Именно по такому принципу осуществляется включение/выключение зарядного устройства. Для этого в схему вводится транзистор, включаемый между «землей» и контактом ADJ . Транзистор управляется TTL-сигналом, формируемым микроконтроллером рис.6.

Рис.6 Включение/выключение стабилизатора LM317

Открывание транзистора приводит к шунтированию на землю вывода ADJ и выключению зарядного устройства. Запирание же транзистора позволяет включить зарядное устройство и сформировать на выходе LM317 напряжение, величина которого задана внешним резистивным делителем. Шунтирование управляющего вывода может осуществляться не напрямую на «землю», а через резистор (рис.7 ). В этом случае на выходе зарядного устройства формируется уже не 1.2В, а несколько большее напряжение, однако, все равно, с достаточно низким потенциалом, что, фактически, соответствует прекращению работы зарядного устройства.

Рис.7

Кроме управляющего транзистора, в схеме зарядного устройства часто имеется еще и ограничитель тока, который отключает стабилизатор LM317 в случае превышение тока нагрузки (в данном случае тока заряда аккумуляторов) сверх установленного значения. Вариант зарядного устройства с ограничителем тока представлен на рис.8. Именно так и выглядят зарядные устройства подавляющего большинства источников бесперебойного питания компании PowerCom модельного ряда KING (семейство KIN ) и модельного ряда Black Knight (семейство BNT ). В данной схеме величина тока, при котором происходит ограничение, задается, в первую очередь, номиналом резистора R3 . Падение напряжения на резисторе R3 управляет транзистором Q1 . Резистор R3 с сопротивлением 1 Ом устанавливает предельное значение тока 0.6А . А в принципе, величина выходного тока, при котором осуществляется ограничение, т.е. величина тока короткого замыкания (КЗ) вычисляется по формуле (2):

Iкз = 600 mV / R3 (2)

Рис.8 Зарядное устройство ИБП PowerCom семейств KIN/BNT

На этом рассмотрение особенностей микросхемы LM317 мы заканчиваем и переходим к обзору практических схем зарядных устройств различных источников бесперебойного питания.

Единственное, на что еще можно обратить внимание, так это на то, что у микросхемы LM317 имеется и отечественный аналог – это стабилизатор 142ЕН12 , который ничем от нее не отличается (ни характеристиками, ни типом корпуса, ни внутренней схемой, ни схемами применения).

Рис.9 Зарядное устройство ИБП APC Back-UPS 600 (шасси 640-0208E)

На рис.9 представлен первый пример использования LM317 для построения зарядного устройства. В этом примере на вход стабилизатора подается выпрямленное, но не сглаженное напряжение, получаемое на выходе диодного моста из пониженного сетевого переменного напряжения. В результате, на выходе стабилизатора, также формируется не постоянное напряжение, а «параболы со срезанными верхушками». Ограничение параболы осуществляется на уровне напряжения стабилизации, который, в первую очередь, задается резисторами R9 и R11 . Более точная подстройка этого напряжения осуществляется делителем R10/VR1 . Таким образом, переменный резистор VR1 позволяет подрегулировать величину выходного напряжения зарядного устройства. Сглаживание выходного напряжения зарядного устройства осуществляется электролитическим конденсатором C3 .

Рис.10 Зарядное устройство ИБП PowerCom KIN 800/1500AP

На рис.10 приводится схема зарядного устройства, использующегося во многих моделях семейств KIN и BNT фирмы PowerCom. Это зарядное устройство строится по классической схеме с ограничением по току. Величина выходного напряжения зарядного устройства задается резистивным делителем R7/R38. Токовым датчиком, задающим порог токового ограничения, является резистор R51 . Токовый датчик управляет транзистором Q8 , с помощью которого осуществляется блокирование стабилизатора в момент превышения током порогового значения. Включение/выключение зарядного устройства осуществляется транзистором Q10 , который управляется сигналом ON/OFF от микропроцессора.

Рис.11 Зарядное устройство ИБП PowerCom KIN 425/625AP

На рис.11 представлена еще одна схема зарядного устройства для UPS компании PowerCom. Эта схема также построена на основе классической схемотехники зарядного устройства с токовым ограничением, однако в ней предусмотрено изменение режимов работы зарядного устройства. Изменение режимов работы, т.е. программирование зарядного устройства, осуществляется сигналом VOLT_SELECT , который является дискретным сигналом и генерируется микропроцессором. Этим сигналом изменяются параметры резистивного делителя, задающего выходное напряжение стабилизатора, и в частности изменяется сопротивление «нижнего» резистора (R2 на рис.4). Установка сигнала VOLT_SELECT в высокий уровень приводит к открыванию транзистора Q12 и запиранию Q7 . В результате «нижним» резистором делителя становится резистор R15 . Установка же сигнала VOLT_SELECT в низкий уровень приводит к открыванию транзистора Q7 и закрыванию Q12 , в результате чего «нижним» резистором делителя становится R17 c другим номиналом сопротивления, что, в итоге, приводит к изменению выходного напряжения зарядного устройства.

Включение и выключение зарядного устройства осуществляется сигналом ON/OFF и транзистором Q18 , при открывании которого управляющий вывод стабилизатора LM317 (конт.1 ) шунтируется на «землю». Ограничение тока, как обычно, осуществляется транзистором Q19 , который, в свою очередь, управляется токовым датчиком – резистором R35 .

На схеме, изображенной на рис.11 можно видеть еще и наличие датчика работы зарядного устройства, состоящего из R53, R45 и C19 . Этим датчиком генерируется сигнал CHRG_ON сразу же, как только на входе UPS появляется питающее напряжение первичной сети. Этот сигнал своим высоким уровнем сообщает микропроцессору о наличии сетевого напряжения и возможности начала процесса заряда аккумуляторов. Именно по этому сигналу микропроцессор устанавливает сигнал ON/OFF в низкий уровень, что и приводит к запуску зарядного устройства. В принципе, этот датчик можно было бы назвать датчиком наличия сетевого напряжения.

Рис.12 Зарядное устройство ИБП Back-UPS 900/1250 (шасси 640-0209)

Зарядное устройство на рис.12 предназначено для формирования мощного тока заряда аккумуляторов. Но так как LM317 позволяет формировать ток величиной всего лишь до 1.5А , то для увеличения мощности устанавливают параллельно два стабилизатора (IC12 и IC13 ), в результате чего ток нагрузки делится между двумя этими микросхемами примерно пополам, т.е. данное зарядное устройство обеспечивает зарядный ток, величиной до . Величина зарядного напряжения задается резисторами R141, R142, R143 и VR6 . Как и в одном из уже рассмотренных примеров, переменный резистор VR6 позволяет обеспечить точную подстройку напряжения зарядного устройства. Эта операция выполняется на заводе-изготовителе, а также может осуществляться сервисными инженерами при тестировании UPS.

В данной схеме предусмотрен плавный запуск зарядного устройства, т.е. выходное напряжение нарастает постепенно – по экспоненциальному закону. Плавный запуск обеспечивается схемой, состоящей из транзистора Q45 и интегрирующей цепи R166/C48 . В момент появления переменного напряжения на выходе понижающего трансформатора T2 , конденсатор C48 разряжен, в результате чего транзистор Q45 оказывается закрытым. Закрытый Q45 «отсекает» от «земли» резистивный делитель (и, в частности, резистор R142 ), с помощью которого задается величина выходного напряжения зарядного устройства. Однако по мере заряда конденсатора C48 , транзистор Q45 начинает приоткрываться, и задающий делитель подключается к «земле». Напряжение на конденсаторе растет по экспоненциальному закону, в результате чего по такому же закону изменяется выходное напряжение и ток.

Транзистор Q19 является управляющим транзистором, с помощью которого осуществляется включение и выключение зарядного устройства. Управляется транзистор сигналом ACFAIL , который устанавливается в высокий уровень в момент пропадания сетевого напряжения. Активизация сигнала ACFAIL приводит к открыванию транзистора Q19 и выключению зарядного устройства.

Кроме того, в данной схеме предусмотрена и термическая компенсация зарядного напряжения, и термическая защита. Для этих целей предназначен терморезистор R161 и управляемый им транзистор Q18 , который, в свою очередь, управляет транзистором Q19.

Кроме LM317 в зарядных устройствах могут применяться и интегральные трехвыводные стабилизаторы на фиксированное напряжение. Эти стабилизаторы имеют три вывода: входное напряжение, выходное напряжение и «земля». Именно относительного «земли» эти стабилизаторы и ограничивают свое выходное напряжение. Из всего многообразия таких микросхем, наиболее подходящими для построения зарядных устройств аккумуляторов являются стабилизаторы на 15 Вольт . Однако напряжение 15В является избыточным. Поэтому для снижения величины действующего выходного напряжения эти стабилизаторы заставляют работать в условно-импульсном режиме. Такой режим подразумевает, что на вход стабилизатора подается несглаженное выпрямленное напряжение. В результате, на выходе стабилизатора формируются «срезанные» на уровне 15 Вольт параболы, при сглаживании которых далее получают напряжение около 14 Вольт . Пример такого зарядного устройства представлен на рис.13.

ИБП – это очень выгодный прибор. Пока он работает, у пользователя нет проблем с электроснабжением. Но на этом функциональность данного прибора не заканчивается. Простейшая доработка бесперебойника дает возможность создать на его базе такие устройства как преобразователь, блок питания и зарядка.



Как бесперебойник переделать в преобразователь напряжения 12/220 В

Преобразователь напряжения (инвертор) превращает постоянный 12-вольтовый ток в переменный, попутно повышая напряжение до 220 вольт. Средняя стоимость такого устройства – 60-70 долларов США. Однако даже у владельцев изношенных бесперебойников с функцией старта от батареи есть вполне реальный шанс получить работоспособный преобразователь фактически даром. Для этого нужно сделать следующее:

    Вскрыть корпус ИБП.

    Демонтировать аккумулятор, сняв с клемм накопителя два провода – красный (на плюс) и черный (на минус).

    Демонтировать спикер – устройство звуковой сигнализации, похожее на сантиметровую шайбу.

    Припаять к красному проводу предохранитель. Большинство конструкторов советуют использовать предохранители на 5 ампер.

    Соединить предохранитель с контактом «входа» ИБП – гнезда, куда вставлялся кабель, соединяющий бесперебойник с розеткой.

    Соединить черный провод со свободным контактом гнезда «входа».

    Взять штатный кабель для подключения ИБП к розетке, срезать вилку. Подключить разъем в гнездо входа и определить цвета проводов, соответствующие красному и черному контактам.

    Подсоединить провод от красного контакта к плюсу аккумулятора, а от черного – к минусу.

    Включить ИБП.

Внутреннее устройство ИБП Eaton 5P 1150i

Такую трансформацию допускают только бесперебойники с функцией старта от батареи. То есть ИБП должен изначально уметь включаться от , без подключения к розетке.

Если у ИБП есть штатная розетка – 220 вольт можно снимать с ее контактов. Если таковой розетки нет – ее заменит удлинитель, подключенный к гнезду «выхода» бесперебойника. Вилка удлинителя удаляется, после чего провода припаиваются к контактам гнезда «выхода».

Основные недостатки подобных преобразователей :

  • Рекомендуемое время работы такого инвертора – до 20 минут, поскольку ИБП не рассчитаны на длительную работу от аккумуляторов. Однако этот недостаток можно устранить, врезав в корпус ИБП компьютерный вентилятор, работающий от 12 В.
  • Отсутствие контроллера заряда аккумулятора. Пользователю придется периодически проверять напряжение на клеммах накопителя. Для устранения этого недостатка в конструкцию преобразователя можно врезать обычное автомобильное реле, припаяв красный провод за предохранителем к 87 контакту. При правильном подключении такое реле разомкнет подачу энергии при падении напряжения на аккумуляторе ниже 12 вольт.

Как из бесперебойника сделать блок питания

В этом случае из всей конструкции бесперебойника понадобится только . Поэтому решившемуся на подобную переделку ИБП пользователю придется либо распотрошить весь ИБП, оставив только корпус и трансформатор, либо снять эту деталь, заготовив для нее отдельный корпус. Далее действуют по следующему плану:

    С помощью омметра определяют обмотку с самым большим сопротивлением.Типовые цвета – черный и белый. Эти провода будут входом в блок питания. Если трансформатор остался в ИБП, то этот шаг можно пропустить – входом в самодельный блок питания в этом случае будет «входное» гнездо на торце ИБП, связующее прибор с розеткой.

    Далее на трансформатор подают переменный ток на 220 вольт. После этого с оставшихся контактов снимают напряжение, подыскивая пару с разностью потенциалов до 15 вольт. Типовые цвета – белый и желтый. Эти провода будут выходом из блока питания.

    Вход в блок питания формируют из проводов, по одну сторону от сердечника. Выход из блока формируют из проводов, расположенных с противоположной стороны.

    На выходе из блока питания ставят диодный мост.

    Потребители подключаются к контактам диодного моста.

Трансформатор

Типовое напряжение на выходе из трансформатора – до 15 В, однако оно просядет после подключения к самодельному блоку питания нагрузки. Вольтаж на выходе конструктору такого устройства придется подбирать путем экспериментов. Поэтому практика использования трансформатора ИБП как основы блока питания для компьютера – это далеко не самая лучшая идея.

Переделка бесперебойника под зарядку

В этом случае не нужна минимальная трансформация, похожая на описанную абзацем выше. Ведь у бесперебойника есть своя батарея, которая заряжается по мере надобности. В итоге для превращения ИБП в зарядное устройство нужно сделать следующее:

    Обнаружить первичный и вторичный контур трансформатора. Этот процесс описан абзацем выше.

    Подать на первичный контур 220 вольт, врезав в цепь регулятор напряжения – в качестве такового можно использовать реостат для лампочек, заменяющий традиционный выключатель.

    Регулятор поможет откалибровать напряжение на обмотке выходе в пределах от 0 до 14-15 вольт. Место врезки регулятора – перед первичной обмоткой.

    Подключить к вторичной обмотке трансформатора диодный мост на 40-50 ампер.

    Соединить клеммы диодного моста с соответствующими полюсами аккумулятора.

    Уровень заряда аккумулятора контролируется по его индикатору или вольтметром.

Написать письмо

По любому вопросу вы можете воспользоваться данной формой.

Приветствую, друзья!

Вы пользуетесь источниками бесперебойного питания, и у вас проблемы с их аккумуляторами?

И мне в ремонт попадают бесперебойники с севшими аккумуляторными батареями.

При севшей батарее источник бесперебойного питания (ИБП) включить в большинстве случаев невозможно. Ситуация усугубляется тем, что зарядить ее штатным зарядным устройством ИБП чаще всего нельзя.

Приходится использовать отдельные зарядные устройства. Одно из таких устройств предлагается вашему вниманию. Оно сделано из того, что было под рукой.

Работа схемы зарядного устройства

Переменное сетевое напряжение понижается трансформатором Т1, выпрямляются диодным мостом на диодах VD1 – VD4 и фильтруется электролитическим конденсатором C1.

Полученное постоянное напряжение подается на резистивный делитель с резисторами R1, R2 и R4. В верхнее плечо делителя включен переменный резистор R1. C его движка можно снимать постоянное напряжение в пределах примерно от 13 до 35 В.

С движка переменного резистора напряжение подается на эмиттерный повторитель, образованный транзистором VT1, нагрузкой которого служит резистор R3. Постоянное напряжение с резистора R3 служит входным сигналом для второго эмиттерного повторителя на составном транзисторе VT2 — VT3.

C выхода этого эмиттерного повторителя постоянное напряжение через резистор R5 подается на заряжаемый аккумулятор. Резистор R5 служит ограничителем тока при случайном замыкании выходных выводов зарядного устройства.

В качестве R1 используется многооборотный резистор, что позволяет точнее устанавливали величину зарядного напряжения. Величину зарядного напряжения можно регулировать в пределах примерно от 10 до 33 В. Это позволяет заряжать сразу два 12 В аккумулятора.

Это устройство использовалось для зарядки 12 В и VRLA аккумуляторов емкостью 5, 7, 9 и 12 А*ч.

Зачем нужны эмиттерные повторители?

Нам нужен регулируемый источник постоянного напряжения, которые должен обладать низким внутренним сопротивлением. Для справки: аккумулятор GP 1272 12 В 7,2 А*ч, широко используемый в ИБП, обладает внутренним сопротивлением около 0,023 Ом.

Наше зарядное устройство должно обладать хотя бы на порядок меньшим выходным сопротивлением. В противном случае величина зарядного напряжения будет заметно снижаться при подключении аккумулятора. Это будет из-за того, что часть напряжения, в соответствии с законом Ома, будет падать на выходном сопротивлении зарядного устройства.

Эмиттерный повторитель называется еще согласователем сопротивления.

Выходное сопротивление эмиттерного повторителя, подключенное параллельно нагрузке Rн, определяется внутренним сопротивлением источника сигнала Ri (см рис) и коэффициентом передачи h21e транзистора по току.

Чем этот коэффициент больше, тем меньше выходное сопротивление.

Источником сигнала для первого эмиттерного повторителя служит резистивный делитель R1, R2, R4.

Источником сигнала для второго эмиттерного повторителя служит резистор R3.

В качестве первого эмиттерного повторителя используется составной транзистор типа TIP122.

Составным он называется потому, что образован двумя транзисторами, смонтированными в общем корпусе.

Общий коэффициент передачи по току определяется произведением коэффициентов отдельных транзисторов.

В качестве второго эмиттерного повторителя используется составной транзистор, образованный из двух отдельных мощных транзисторов типа D209.

Конструктивное исполнение зарядного устройства

Из-за недостатка времени зарядное устройство не было смонтировано «по всем правилам». Активные элементы VD1 – VD4, VT2, VT3, VT4 установлены на общий радиатор, выдранный из неисправного компьютерного блока питания. Диодные сборки и мощные транзисторы D209 были взяты оттуда же.

Все остальное было смонтировано на куске картона. Радиатор имеет небольшие размеры, на нем установлены диоды и транзисторы, на которых рассеивается значительная мощность, поэтому он нуждается в обдуве вентилятором.

Вентилятор обдува питается напряжением, снимаемым с резистора R4 резистивного делителя через эмиттерный повторитель на составном транзисторе VT4 типа TIP122.

Используется небольшой 12 В компьютерный вентилятор. Подаваемое на него постоянное напряжение примерно равно 6 В.

При пониженном напряжении питании скорость вращения вентилятора и шум от него меньше.

В качестве диодов VD1 – VD4 используются две параллельно соединенные диодные сборки GBU605 от того же компьютерного блока питания.


Перед каждым автовладельцем когда-нибудь встает вопрос о том, как зарядить подсевший аккумулятор. Передо мной он тоже однажды возник. И случилось это как всегда неожиданно, в выходной день, в деревне, и как назло, ни у кого поблизости ничего похожего на зарядку не нашлось. Пришлось напрячь извилины и быстренько изготовить из подручных средств простое, но мощное зарядное устройство. И помог мне в этом сгоревший УПС - источник бесперебойного питания для компьютеров. Не вдаваясь в глубокие подробности, просто замечу, что это устройство питает компьютер от встроенного 12-ти вольтового аккумулятора при пропадании напряжения в розетке.

Из сломанного бесперебойника берется самое главное - мощный трансформатор, который обычно остаётся целым, все остальные запчасти из него нам не нужны.

Итак, для изготовления простого зарядного устройства понадобится:

1. Трансформатор от сгоревшего бесперебойника
2. Диодный мост (выпрямитель) 2-4 шт.
3. Конденсатор 100…1000 мкф с напряжением не менее 25 В
4. Радиатор средних размеров
5. Дощечка, фанерка, пластик
6. Термопаста КПТ-8
7. Тестер
8. Паяльник, куски провода












При помощи тестера определяем выводы обмотки, у которых большее сопротивление (от 10 до 50 Ом), это будет сетевая обмотка на 220 В. Выводы вторичной обмотки на 12В более толстые, намотана она более толстым проводом, поэтому у вторичной обмотки сопротивление практически равно нулю.


Выводы, которые шли на выходные разъемы бесперебойника, теперь будут подключены в сеть, а провода, по которым с платы подводилось 12В, будут подключены к выпрямителю.

Еще понадобится несколько выпрямительных диодных мостов GBU406, GBU 605, GBU606, и емкость для фильтра, конденсатор от 100 до 1000 мкф на напряжение не менее 25В (от сгоревшего компьютерного блока питания). Пригодится и небольшой радиатор для диодов. Конечно, можно сделать выпрямитель и на обычных диодах с максимальным током не менее 10 А и обратным напряжением не менее 25 В, но в тот момент под рукой их не оказалось, а впоследствии я тоже использовал готовые выпрямительные мосты, потому что их удобно крепить на радиатор. Выпрямительные мостики складываются стопкой, промазываются теплопроводной пастой и длинным болтом прижимаются к радиатору. Все одноимённые выводы соединяются параллельно. Плюсы с плюсами, минусы с минусами и т.д.


На подходящей по размеру деревянной дощечке, фанерке, или куске пластика крепится трансформатор, радиатор с диодами, монтируется вся схема, подсоединяется шнур с вилкой от старого паяльника - и зарядка готова!

Варианты крепления и компоновки узлов зарядного устройства могут быть любыми, исходя из того, что есть под рукой.





При выпрямленном напряжении на выходе около 18 В зарядное устройство свободно дает ток до 5 А. Обычный аккумулятор заряжается за час, сильно посаженный - за 3…4 часа. У многих автомобилистов в нашем селе теперь такая зарядка есть.

Более того, для лучшего заряда аккумуляторов я придумал подключать зарядное устройство, в импульсном режиме. Импульсное конечно, громко сказано, это лишь значит, что оно подключено в розетку через электромеханическое реле времени.

Это простое суточное электромеханическое реле, родом оно из поднебесной, в магазине продают по 150 руб.