С регулятором широтно импульсной модуляции. Широтно-импульсная модуляция (ШИМ). Что такое широтно-импульсная модуляция

Еще один обзор на тему всяких вещей для самоделок. На этот раз я расскажу о цифровом регуляторе оборотов. Вещица по своему интересная, но хотелось большего.
Кому интересно, читайте дальше:)

Имея в хозяйстве некоторые низковольтные устройства типа небольшой шлифовальной машинки и т.п. я захотел немного увеличить их функциональный и эстетический вид. Правда это не получилось, хотя я надеюсь все таки добиться своего, возможно в другой раз, на за саму вещицу расскажу сегодня.
Производитель данного регулятора фирма Maitech, вернее именно это название часто встречается на всяких платках и блочках для самоделок, хотя сайт этой фирмы почему то мне не попался.

Из-за того, что я не сделал в итоге то, что хотел, обзор будет короче обычного, но начну как всегда с того, как это продается и присылается.
В конверте лежал обычный пакетик с защелкой.

В комплекте только регулятор с переменным резистором и кнопкой, жесткой упаковки и инструкции нет, но доехало все целым и без повреждений.

Сзади присутствует наклейка, заменяющая инструкцию. В принципе большего для такого устройства и не требуется.
Указан рабочий диапазон напряжения 6-30 Вольт и максимальный ток в 8 Ампер.

Внешний вид весьма неплох, темное «стекло», темно-серый пластик корпуса, в выключенном состоянии кажется вообще черным. По внешнему виду зачет, придраться не к чему. Спереди была приклеена транспортировочная пленка.
Установочные размеры устройства:
Длина 72мм (минимальное отверстие в корпусе 75мм), ширина 40мм, глубина без учета передней панели 23мм (с передней панелью 24мм).
Размеры передней панели:
Длина 42.5, мм ширина 80мм

Переменный резистор идет в комплекте с ручкой, ручка конечно грубовата, но для применения вполне сойдет.
Сопротивление резистора 100КОм, зависимость регулировки - линейная.
Как потом выяснилось, 100КОм сопротивление дает глюк. При питании от импульсного БП невозможно выставить стабильные показания, сказывается наводка на провода к переменному резистору, из-за чего показания скачут +\- 2 знака, но ладно бы скакали, вместе с этим скачут обороты двигателя.
Сопротивление резистора высокое, ток маленький и провода собирают все помехи вокруг.
При питании от линейного БП такая проблема отсутствует полностью.
Длина проводов к резистору и кнопке около 180мм.

Кнопка, ну тут ничего особенного. Контакты нормально открытые, установочный диаметр 16мм, длина 24мм, подсветки нет.
Кнопка выключает двигатель.
Т.е. при подаче питания индикатор включается, двигатель запускается, нажатие на кнопку его выключает, второе нажатие включает опять.
Когда двигатель выключен то индикатор так же не светится.

Под крышкой находится плата устройства.
На клеммы выведены контакты питания и подключения двигателя.
Плюсовые контакты разъема соединены вместе, силовой ключ коммутирует минусовой провод двигателя.
Подключение переменного резистора и кнопки разъемное.
На вид все аккуратно. Выводы конденсатора немного кривоваты, но я думаю что это можно простить:)

Дальнейшую разборку я спрячу под спойлер.

Подробнее

Индикатор довольно большой, высота цифры 14мм.
Размеры платы 69х37мм.

Плата собрана аккуратно, около контактов индикатора присутствуют следы флюса, но в целом плата чистая.
На плате присутствуют: диод для защиты от переполюсовки, стабилизатор 5 Вольт, микроконтроллер, конденсатор 470мкФ 35 Вольт, силовые элементы под небольшим радиатором.
Так же видны места под установку дополнительных разъемов, назначение их непонятно.

Набросал небольшую блок-схему, просто для примерного понимания что и как коммутируется и как подключается. Переменный резистор так и включен одной ногой к 5 Вольт, второй на землю. потому его можно спокойно заменить на более низкий номинал. На схеме нет подключений к нераспаянному разъему.

В устройстве использован микроконтроллер производства STMicroelectronics.
Насколько мне известно, этот микроконтроллер используется в довольно большом количестве разных устройств, например ампервольтметрах.

Стабилизатор питания , при работе на максимальном входном напряжении нагревается, но не очень сильно.

Часть тепла от силовых элементов отводится на медные полигоны платы, слева видно большое количество переходов с одной стороны платы на другую, что помогает отводить тепло.
Так же тепло отводится при помощи небольшого радиатора, который прижат к силовым элементам сверху. Такое размещение радиатора кажется мне несколько сомнительным, так как тепло отводится через пластмассу корпуса и такой радиатор помогает несильно.
Паста между силовыми элементами и радиатором отсутствует, рекомендую снять радиатор и промазать пастой, хоть немного но станет лучше.

В силовой части применен транзистор , сопротивление канала 3.3мОм, максимальный ток 161 Ампер, но максимальное напряжение всего 30 Вольт, потому я бы рекомендовал ограничивать входное на уровне 25-27 Вольт. При работе на околомаксимальных токах присутствует небольшой нагрев.
Так же рядом расположен диод, который гасит выбросы тока от самоиндукции двигателя.
Здесь применен 10 Ампер, 45 Вольт. К диоду вопросов нет.


Первое включение. Так получилось, что испытания я проводил еще до снятия защитной пленки, потому на этих фото она еще есть.
Индикатор контрастный, в меру яркий, читается отлично.

Сначала я решил попробовать на мелких нагрузках и получил первое разочарование.
Нет, претензий к производителю и магазину у меня нет, просто я надеялся, что в таком относительно недешевом устройстве будет присутствовать стабилизация оборотов двигателя.
Увы, это просто регулируемый ШИМ, на индикаторе отображается % заполнения от 0 до 100%.
Мелкого двигателя регулятор даже не заметил, дня него это совсем смешной ток нагрузки:)

Внимательные читатели наверняка обратили внимание на сечение проводов, которыми я подключил питание к регулятору.
Да, дальше я решил подойти к вопросу более глобально и подключил более мощный двигатель.
Он конечно заметно мощнее регулятора, но на холостом ходу его ток около 5 Ампер, что позволило проверить регулятор на режимах более приближенных к максимальным.
Регулятор вел себя отлично, кстати я забыл указать что при включении регулятор плавно увеличивает заполнение ШИМ от нуля до установленного значения обеспечивая плавный разгон, на индикаторе при этом сразу показывается установленное значение, а не как на частотных приводах, где отображается реальное текущее.
Регулятор не вышел из строя, немного нагрелся, но не критично.

Так как регулятор импульсный, то я решил просто ради интереса потыкаться осциллографом и посмотреть что происходит на затворе силового транзистора в разных режимах.
Частота работы ШИМа около 15 КГц и не меняется в процессе работы. Двигатель заводится примерно при 10% заполнения.



Изначально я планировал поставить регулятор в свой старый (скорее уже древний) блок питания для мелкого электроинструмента (о нем как нибудь в другой раз). по идее он должен был стать вместо передней панели, а на задней должен был расположиться регулятор оборотов, кнопку ставить не планировал (благо при включении устройство сразу переходит в режим - включено).
Должно было получиться красиво и аккуратно.

Но дальше меня ждало некоторое разочарование.
1. Индикатор хоть и был немного меньше по габаритам чем вставка передней панели, но хуже было то, что он не влазил по глубине упираясь в стойки для соединения половинок корпуса.
и если пластмассу корпуса индикатора можно было срезать, то не стал бы все равно, так как дальше мешала плата регулятора.
2. Но даже если бы первый вопрос я бы решил, то была вторая проблема, я совсем забыл как у меня сделан блок питания. Дело в том, что регулятор рвет минус питания, а у меня дальше по схеме стоит реле реверса, включения и принудительной остановки двигателя, схема управления всем этим. И с их переделкой оказалось все куда сложнее:(

Если бы регулятор был со стабилизацией оборотов, то я бы все таки заморочился и переделал схему управления и реверса, либо переделал регулятор под коммутацию + питания. А так можно и переделаю, но уже без энтузиазма и теперь не знаю когда.
Может кому интересно, фото внутренностей моего БП, собирался он лет так около 13-15 назад, почти все время работал без проблем, один раз пришлось заменить реле.

Резюме.
Плюсы
Устройство полностью работоспособно.
Аккуратный внешний вид.
Качественная сборка
В комплект входит все необходимое.

Минусы .
Некорректная работа от импульсных блоков питания.
Силовой транзистор без запаса по напряжению
При таком скромном функционале завышена цена (но здесь все относительно).

Мое мнение. Если закрыть глаза на цену устройства, то само по себе оно вполне неплохое, и выглядит аккуратно и работает нормально. Да, присутствует проблема не очень хорошей помехозащищенности, думаю что решить ее несложно, но немного расстраивает. Кроме того рекомендую не превышать входное напряжение выше 25-27 Вольт.
Больше расстраивает то, что я довольно много смотрел варианты всяких готовых регуляторов, но нигде не предлагают решение со стабилизацией оборотов. Возможно кто то спросит, зачем мне это. Объясню, как то попала в руки шлифовальная машинка со стабилизацией, работать гораздо приятнее чем обычной.

На этом все, надеюсь что было интересно:)

Товар предоставлен для написания обзора магазином. Обзор опубликован в соответствии с п.18 Правил сайта.

Планирую купить +23 Добавить в избранное Обзор понравился +38 +64

С аналоговым интегральным таймером SE555/NE555 (КР1006), выпускаемым компанией Signetics Corporation с далекого 1971 года прекрасно знакомо большинство советских и зарубежных радиолюбителей. Трудно перечислить, для каких только целей не использовалась эта недорогая, но многофункциональная микросхема за почти полувековой период своего существования. Однако, даже несмотря на быстрое развитие электронной промышленности в последние годы, она по-прежнему продолжает пользоваться популярностью и выпускается в значительных объемах.
Предлагаемая Jericho Uno простенькая схемка автомобильного ШИМ-регулятора – не профессиональная, полностью отлаженная разработка, отличающаяся своей безопасностью и надежностью. Это всего лишь небольшой дешевый эксперимент, собранный на доступных бюджетных деталях и вполне удовлетворяющий минимальным требованиям. Поэтому его разработчик не берет на себя ответственности за все то, что может произойти с вашим оборудованием при эксплуатации смоделированной схемы.

Схема ШИМ регулятор на NE555

Для создания ШИМ-устройства вам понадобится:
  • электропаяльник;
  • микросхема NE555;
  • переменный резистор на 100 кОм;
  • резисторы на 47 Ом и 1 кОм по 0,5W;
  • конденсатор на 0,1 мкФ;
  • два диода 1N4148 (КД522Б).

Пошаговая сборка аналоговой схемы

Построение цепи начинаем с установки перемычек на микросхему. Используя паяльник, замыкаем между собой следующие контакты таймера: 2 и 6, 4 и 8.


Дальше, руководствуясь направлением движения электронов, распаиваем на переменном резисторе «плечи» диодного моста (проход тока в одну сторону). Номиналы диодов подобраны из имеющихся в наличие, недорогих. Можно заменить их любыми другими – это практически не повлияет на работу схемы.


Во избежание короткого замыкания и перегорания микросхемы при выкручивании переменного резистора в крайнее положение, ставим по питанию шунтирующее сопротивление в 1 кОм (контакты 7-8).


Поскольку NE555 выступает в роли генератора пилы, для получения схемы с заданной частотой, длительностью импульса и паузой, осталось подобрать резистор и конденсатор. Неслышных 18 кГц нам даст конденсатор 4,7 нФ, но такое малое значение емкости вызовет перекос плеч при работе микросхемы. Ставим оптимальную в 0,1 мкФ (контакты 1-2).


Избежать противного «пищания» схемы и подтянуть выход к высокому уровню можно чем-то низкоомным, например резистором 47-51 Ом.


Осталось подключить питание и нагрузку. Схема рассчитана на входное напряжение бортовой сети автомобиля 12V постоянного тока, но для наглядной демонстрации вполне запустится и от 9V батареи. Подключаем ее на вход микросхемы, соблюдая полярность (плюс на 8 ножку, минус на 1 ножку).


Осталось разобраться с нагрузкой. Как видно из графика, при понижении переменным резистором выходного напряжения до 6V пила на выходе (ножки 1-3) сохранилась, то есть NE555 в данной схеме и генератор пилы и компаратор одновременно. Ваш таймер работает в а-стабильном режиме и имеет коэффициент заполнения меньше 50%.


Модуль выдерживает 6-9 А проходного постоянного тока, так что при минимальных потерях можно подключить к нему как светодиодную полосу в автомобиле, так и маломощный двигатель, который и дым развеет и лицо в жару обдует. Примерно так:



Или так:


Принцип работы ШИМ регулятора

Работа ШИМ регулятора достаточно проста. Таймер NE555 отслеживает напряжение на емкости С. При ее заряде до достижения максимума (полный заряд) происходит открывание внутреннего транзистора и появлению логического нуля на выходе. Далее емкость разряжается, что приводит к закрытию транзистора и приходу к выходу логической единицы. При полном разряде емкости происходит переключение системы и все повторяется. В момент заряда ток идет по одному плечу, а при разряде – по-другому. Переменным резистором мы меняем соотношение сопротивления плеч, автоматически понижая либо увеличивая напряжение на выходе. В схеме наблюдается частичное отклонение частоты, но в слышимый диапазон она не попадает.

Смотирте видео работы ШИМ регулятора

Классическая схема широтно-импульсного модуля управления 12-ти вольтовой нагрузкой, схема собрана на основе таймера 555 и полевого транзистора.

Для небольшого настольного станка с 12 В питанием, что купил недавно на Али, понадобился модуль регулятора скорости вращения двигателя. В общем решил сделать свою собственную схему, так как снова заказывать этот блок не хотелось, до и дорого будет готовый брать.

Схема ШИМ контроллера 12В


Поразмыслив пришёл к выводу, что нужна схема для регулятора скорости мотора постоянного тока в виде ШИМ-контроллера. Он может сделать гораздо больше, чем просто изменять скорость двигателя. Данная схема имеет выход 12 вольт с различной скважностью и её можно использовать в качестве многих других целей:
  • Регулятор скорости мотора;
  • Светодиодный диммер подсветки;
  • Регулятор тепла для нагреваемого провода;
  • Регулятор напряжения для электролитического травления и т. д.

Все запчасти могут куплены за копейки, или выпаяны со старых плат с деталями. Далее список радиодеталей для сборки схемы:

Детали для регулятора

  • 1 х 0,01 мкФ керамический конденсатор
  • 1 х 0.1 мкФ керамический конденсатор
  • 2 х 1N4001 выпрямительные диоды
  • 1 х 1N4004 выпрямительный диод
  • 1 х IRF530 100 В 14 А полевой транзистор
  • 1 х 100 Ом резистор
  • 1 х 1 кОм резистор
  • 1 х NE555 таймер
  • 1 x 8-контактный разъем под м/с
  • 1 х 100 кОм потенциометр
  • 1 х 70 х 100 односторонняя ПП


На этой картинке показана печатная монтажная плата для сборки ШИМ регулятора, но вы можете разработать свой вариант. При пайке обратите внимание на расположение таймера 555. Все остальные детали вполне понятны куда чего.


Есть 3 перемычки на плате: от GND к С1, с контакта 7 555 на D1 и GND к IRF530.


Также на плате есть сквозное отверстие под транзистор IRF530 - это на теплоотвод.


При подключении мотора, нужно проверить направление вращения двигателя, прежде чем переходить к окончательной сборке, хотя электромотор будет исправно работать в любом направлении. Ну вот и вся конструкция, проверенная и 100% рабочая - успехов вам в её самостоятельной сборке!

В некоторых случаях, например, в фонариках или домашних осветительных приборах, возникает необходимость регулировать яркость свечения. Казалось бы, чего уж проще: достаточно изменить ток через светодиод, увеличив или уменьшив . Но в этом случае на ограничительном резисторе будет расходоваться значительная часть энергии, что совсем недопустимо при автономном питании от батарей или аккумуляторов.

Кроме того, цвет свечения светодиодов будет изменяться: например, белый цвет при понижении тока меньше номинального (для большинства светодиодов 20мА) будет иметь несколько зеленоватый оттенок. Такое изменение цвета в ряде случаев совершенно ни к чему. Представьте себе, что эти светодиоды подсвечивают экран телевизора или компьютерного монитора.

В этих случаях применяется ШИМ - регулирование (широтно - импульсное) . Смысл его в том, что периодически зажигается и гаснет. При этом ток на протяжении всего времени вспышки остается номинальным, поэтому спектр свечения не искажается. Уж если светодиод белый, то зеленые оттенки появляться не будут.

К тому же при таком способе регулирования мощности потери энергии минимальны, КПД схем с ШИМ регулированием очень высок, достигает 90 с лишним процентов.

Принцип ШИМ - регулирования достаточно простой, и показан на рисунке 1. Различное соотношение времени зажженного и погашенного состояния на глаз воспринимается как : как в кино - отдельно показываемые поочередно кадры воспринимаются как движущееся изображение. Здесь все зависит от частоты проекции, о чем разговор будет чуть позже.

Рисунок 1. Принцип ШИМ - регулирования

На рисунке изображены диаграммы сигналов на выходе устройства управления ШИМ (или задающий генератор). Нулем и единицей обозначены : логическая единица (высокий уровень) вызывает свечение светодиода, логический нуль (низкий уровень), соответственно, погасание.

Хотя все может быть и наоборот, поскольку все зависит от схемотехники выходного ключа, - включение светодиода может осуществляться низким уровнем а выключение, как раз высоким. В этом случае физически логическая единица будет иметь низкий уровень напряжения, а логический нуль высокий.

Другими словами, логическая единица вызывает включение какого-то события или процесса (в нашем случае засвечивание светодиода), а логический нуль должен этот процесс отключить. То есть не всегда высокий уровень на выходе цифровой микросхемы является ЛОГИЧЕСКОЙ единицей, все зависит от того, как построена конкретная схема. Это так, для сведения. Но пока будем считать, что ключ управляется высоким уровнем, и по-другому просто быть не может.

Частота и ширина управляющих импульсов

Следует обратить внимание на то, что период следования импульсов (или частота) остается неизменным. Но, в общем, частота импульсов на яркость свечения влияния не оказывает, поэтому, к стабильности частоты особых требований не предъявляется. Меняется лишь длительность (ШИРИНА), в данном случае, положительного импульса, за счет чего и работает весь механизм широтно-импульсной модуляции.

Длительность управляющих импульсов на рисунке 1 выражена в %%. Это так называемый «коэффициент заполнения» или, по англоязычной терминологии, DUTY CYCLE. Выражается отношением длительности управляющего импульса к периоду следования импульсов.

В русскоязычной терминологии обычно используется «скважность» - отношение периода следования к времени импульс а. Таким образом если коэффициент заполнения 50%, то скважность будет равна 2. Принципиальной разницы тут нет, поэтому, пользоваться можно любой из этих величин, кому как удобней и понятней.

Здесь, конечно, можно было бы привести формулы для расчета скважности и DUTY CYCLE, но, чтобы не усложнять изложение, обойдемся без формул. В крайнем случае, закон Ома. Уж тут ничего не поделаешь: «Не знаешь закон Ома, сиди дома!». Если уж кого эти формулы заинтересуют, то их всегда можно найти на просторах Интернета.

Частота ШИМ для светорегулятора

Как было сказано чуть выше, особых требований к стабильности частоты импульсов ШИМ не предъявляется: ну, немного «плавает», да и ладно. Подобной нестабильностью частоты, кстати, достаточно большой, обладают ШИМ - регуляторы , что не мешает их применению во многих конструкциях. В данном случае важно лишь, чтобы эта частота не стала ниже некоторого значения.

А какая должна быть частота, и насколько она может быть нестабильна? Не забывайте, что речь идет о светорегуляторах. В кинотехнике существует термин «критическая частота мельканий». Это частота, при которой отдельные картинки, показываемые друг за другом, воспринимаются как движущееся изображение. Для человеческого глаза эта частота составляет 48Гц.

Вот именно по этой причине частота съемки на кинопленке составляла 24кадр/сек (телевизионный стандарт 25кадр/сек). Для повышения этой частоты до критической в кинопроекторах применяется двухлопастной обтюратор (заслонка) дважды перекрывающий каждый показываемый кадр.

В любительских узкопленочных 8мм проекторах частота проекции составляла 16кадр/сек, поэтому обтюратор имел аж три лопасти. Тем же целям в телевидении служит тот факт, что изображение показывается полукадрами: сначала четные, а потом нечетные строки изображения. В результате получается частота мельканий 50Гц.

Работа светодиода в режиме ШИМ представляет собой отдельные вспышки регулируемой длительности. Чтобы эти вспышки воспринимались на глаз как непрерывное свечение, их частота должна быть никак не меньше критической. Выше сколько угодно, но ниже никак нельзя. Этот фактор следует учитывать при создании ШИМ - регуляторов для светильников .

Кстати, просто, как интересный факт: ученые каким-то образом определили, что критическая частота для глаза пчелы составляет 800Гц. Поэтому кинофильм на экране пчела увидит как последовательность отдельных изображений. Для того, чтобы она увидела движущееся изображение, частоту проекции потребуется увеличить до восьмисот полукадров в секунду!

Для управления собственно светодиодом используется . В последнее время наиболее широко для этой цели используются , позволяющие коммутировать значительную мощность (применение для этих целей обычных биполярных транзисторов считается просто неприличным).

Такая потребность, (мощный MOSFET - транзистор) возникает при большом количестве светодиодов, например, при , о которых будет рассказано чуть позже. Если же мощность невелика - при использовании одного - двух светодиодов, можно использовать ключи на маломощных , а при возможности подключать светодиоды непосредственно к выходам микросхем.

На рисунке 2 показана функциональная схема ШИМ - регулятора. В качестве элемента управления на схеме условно показан резистор R2. Вращением его ручки можно в необходимых пределах изменять скважность управляющих импульсов, а, следовательно, яркость светодиодов.

Рисунок 2. Функциональная схема ШИМ - регулятора

На рисунке показаны три цепочки последовательно соединенных светодиодов с ограничивающими резисторами. Примерно такое же соединение применяется в светодиодных лентах. Чем длиннее лента, тем больше светодиодов, тем больше потребляемый ток.

Именно в этих случаях потребуются мощные , допустимый ток стока которых должен быть чуть больше тока, потребляемого лентой. Последнее требование выполняется достаточно легко: например, у транзистора IRL2505 ток стока около 100А, напряжение стока 55В, при этом, его размеры и цена достаточно привлекательны для использования в различных конструкциях.

Задающие генераторы ШИМ

В качестве задающего ШИМ - генератора может использоваться микроконтроллер (в промышленных условиях чаще всего), или схема, выполненная на микросхемах малой степени интеграции. Если в домашних условиях предполагается изготовить незначительное количество ШИМ - регуляторов, а опыта создания микроконтроллерных устройств нет, то лучше сделать регулятор на том, что в настоящее время оказалось под рукой.

Это могут быть логические микросхемы серии К561, интегральный таймер , а также специализированные микросхемы, предназначенные для . В этой роли можно заставить работать даже , собрав на нем регулируемый генератор, но это уж, пожалуй, «из любви к искусству». Поэтому, далее будут рассмотрены только две схемы: самая распространенная на таймере 555, и на контроллере ИБП UC3843.

Схема задающего генератора на таймере 555

Рисунок 3. Схема задающего генератора

Эта схема представляет собой обычный генератор прямоугольных импульсов, частота которого задается конденсатором C1. Заряд конденсатора происходит по цепи «Выход - R2 - RP1- C1 - общий провод». При этом на выходе должно присутствовать напряжение высокого уровня, что равнозначно, что выход соединен с плюсовым полюсом источника питания.

Разряжается конденсатор по цепи «C1 - VD2 - R2 - Выход - общий провод» в то время, когда на выходе присутствует напряжение низкого уровня, - выход соединен с общим проводом. Вот эта разница в путях заряда - разряда времязадающего конденсатора и обеспечивает получение импульсов с регулируемой шириной.

Следует заметить, что диоды, даже одного типа, имеют разные параметры. В данном случае играет роль их электрическая емкость, которая изменяется под действием напряжения на диодах. Поэтому вместе с изменением скважности выходного сигнала меняется и его частота.

Главное, чтобы она не стала меньше критической частоты, о которой было упомянуто чуть выше. Иначе вместо равномерного свечения с различной яркостью будут видны отдельные вспышки.

Приблизительно (опять же виноваты диоды) частоту генератора можно определить по формуле, показанной ниже.

Частота генератора ШИМ на таймере 555.

Если в формулу емкость конденсатора подставить в фарадах, сопротивление в Омах, то результат должен получиться в герцах Гц: от системы СИ никуда не денешься! При этом подразумевается, что движок переменного резистора RP1 находится в среднем положении (в формуле RP1/2), что соответствует выходному сигналу формы меандр. На рисунке 2 это как раз та часть, где указана длительность импульса 50%, что равнозначно сигналу со скважностью 2.

Задающий генератор ШИМ на микросхеме UC3843

Его схема показана на рисунке 4.

Рисунок 4. Схема задающего генератора ШИМ на микросхеме UC3843

Микросхема UC3843 является управляющим ШИМ - контроллером для импульсных блоков питания и применяется, например, в компьютерных источниках формата ATX. В данном случае типовая схема ее включения несколько изменена в сторону упрощения. Для управления шириной выходного импульса на вход схемы подается регулирующее напряжение положительной полярности, то на выходе получается импульсный сигнал ШИМ.

В простейшем случае регулирующее напряжение можно подать с помощью переменного резистора сопротивлением 22…100КОм. При необходимости можно управляющее напряжение получать, например, с аналогового датчика освещенности, выполненного на фоторезисторе: чем темнее за окном, тем светлее в комнате.

Регулирующее напряжение воздействует на выход ШИМ, таким образом, что при его снижении ширина выходного импульса увеличивается, что вовсе не удивительно. Ведь исходное назначение микросхемы UC3843 - стабилизация напряжения блока питания: если выходное напряжение падает, а вместе с ним и регулирующее напряжение, то надо принимать меры (увеличивать ширину выходного импульса) для некоторого повышения выходного напряжения.

Регулирующее напряжение в блоках питания вырабатывается, как правило, с помощью стабилитронов. Чаще всего это или им подобные.

При указанных на схеме номиналах деталей частота генератора около 1КГц, и в отличие от генератора на таймере 555, она при изменении скважности выходного сигнала не «плавает» - забота о постоянстве частоты импульсных блоков питания.

Чтобы регулировать значительную мощность, например, светодиодная лента, к выходу следует подключить ключевой каскад на транзисторе MOSFET, как было показано на рисунке 2.

Можно было бы и побольше рассказать о ШИМ - регуляторах, но пока остановимся на этом, а в следующей статье рассмотрим различные способы подключения светодиодов. Ведь не все способы одинаково хороши, есть такие, которых следует избегать, да и просто ошибок при подключении светодиодов случается предостаточно.

Регулировать напряжение питания мощных потребителей удобно с помощью регуляторов с широтно-импульсной модуляцией. Преимущество таких регуляторов заключается в том, что выходной транзистор работает в ключевом режиме, а значить имеет два состояния - открытое или закрытое. Известно, что наибольший нагрев транзистора происходит в полуоткрытом состоянии, что приводит к необходимости устанавливать его на радиатор большой площади и спасать его от перегрева.

Предлагаю простую схему ШИМ регулятора. Питается устройство от источника постоянного напряжения 12В. При указанном экземпляре транзистора, выдерживает ток до 10А.

Рассмотрим работу устройства: На транзисторах VT1 и VT2 собран мультивибратор с регулируемой скважностью импульсов. Частота следования импульсов около 7кГц. С коллектора транзистора VT2 импульсы поступают на ключевой транзистор VT3, который управляет нагрузкой. Скважность регулируется переменным резистором R4. При крайнем левом положении движка этого резистора, см. верхнюю диаграмму, импульсы на выходе устройства узкие, что свидетельствует о минимальной выходной мощности регулятора. При крайнем правом положении, см. нижнюю диаграмму, импульсы широкие, регулятор работает на полную мощность.


Диаграмма работы ШИМ в КТ1

С помощью данного регулятора можно управлять бытовыми лампами накаливания на 12 В, двигателем постоянного тока с изолированным корпусом. В случае применения регулятора в автомобиле, где минус соединён с корпусом, подключение следует выполнять через p-n-p транзистор, как показано на рисунке.
Детали: В генераторе могут работать практически любые низкочастотные транзисторы, например КТ315, КТ3102. Ключевой транзистор IRF3205, IRF9530. Транзистор p-n-p П210 заменим на КТ825, при этом нагрузку можно подключать на ток до 20А!

И в заключении следует сказать, что данный регулятор работает в моей машине с двигателем обогрева салона уже более двух лет.

Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
VT1, VT2 Биполярный транзистор

KTC3198

2 В блокнот
VT3 Полевой транзистор N302AP 1 В блокнот
C1 Электролитический конденсатор 220мкФ 16В 1 В блокнот
C2, C3 Конденсатор 4700 пФ 2 В блокнот
R1, R6 Резистор

4.7 кОм

2 В блокнот
R2 Резистор

2.2 кОм

1 В блокнот
R3 Резистор

27 кОм

1 В блокнот
R4 Переменный резистор 150 кОм 1 В блокнот
R5 Резистор