Режимы работы pci e x16. NVMe-накопители в разных режимах работы интерфейса PCI Express: практическое исследование масштабируемости интерфейса в задачах передачи данных. Типы устройств, использующих PCI Express x2, x4, x8, x12, x16 и x32

Режимы работы системных шин PCI и ISA имеют очень большое значение. Задание неправильных значений способно привести к нестабильной работе карт расширения и конфликтам между ними. Расположение опций - пункт CHIPSET FEATURES SETUP Advanced (AWARD BIOS 6.0), Advanced Chipset Features

PCI 2.1 Support - поддержка спецификации 2.1 шины PCI. Для всех современных компьютеров этот режим должен быть включен (Enabled) . Исключение возможно только в том случае, если в вашем компьютере установлены устаревшие карты расширения для шины PCI, не поддерживающие эту спецификацию. Но тогда откажутся работать некоторые PCI карты.

CPU to PCI Write Buffer - использование буфера при пересылке данных от процессора к шине PCI. Включение (Enabled) этого режима положительно сказывается на быстродействии компьютера.

PCI Pipeline (PCI Pipelining) - включение (Enabled) этой опции сочетает накопление данных от процессора к шине PCI с их конвейерной обработкой, что, естественно, повышает быстродействие.

PCI Dynamic Bursting - включение пакетного режима передачи данных по шине PCI. Для повышения быстродействия данная опция должна быть задействована (Enabled).

PCI Master О WS Write - отключение задержки при обмене между мастер-устройствами на шине PCI и оперативной памятью. При включении (Enabled) этого режима увеличивается общее быстродействие компьютера, но в случае нестабильной работы карт расширения эту опцию придется выключить (Disabled).

Delayed Transaction (PCI Delay Transaction) - включение этого параметра позволяет обращаться одновременно как к медленным ISA картам, так и к быстрым PCI, что существенно повышает общее быстродействие. Выключение данной опции приводит к тому, что во время доступа к картам, подключенным к шине ISA, обращение к устройствам, использующим шину PCI, становится невозможным. Естественно, при использовании в вашем компьютере ISA карт данный параметр должен быть включен (Enabled).

Peer Concurrency - разрешает параллельную работу нескольких устройств, подключенных к шине PCI. Естественно, чтобы обеспечить максимальное быстродействие, параметр должен быть включен (Enabled) . Но не все карты расширения - особенно старые - поддерживают эту возможность. Если после включения этой опции вы столкнулись с нестабильной работой компьютера, укажите значение Disabled.



Passive Release - разрешает параллельную работу шин PCI и ISA. Включение (Enabled) этой опции положительно сказывается на быстродействии компьютера.

PCI Latency Timer - максимальное количество тактов шины PCI, в течение которых устройство, подключенное к этой шине, может удерживать шину занятой в случае, если другое устройство также нуждается в доступе к шине. Обычно допускается удержание шины в течение 32 тактов. Если будут появляться сообщения об ошибках отдельных карт расширения или будет наблюдаться их неустойчивая работа, увеличьте это значение.

16 Bit I/O RecoveryTime - указывает задержку в тактах после выдачи запроса на чтение или запись и самой операцией для шестнадцатиразрядных карт расширения, подключенных к шине ISA. Для начала можно попытаться установить минимальную задержку в 1 такт. В случае если при работе с такими устройствами будут происходить ошибки, увеличьте задержку (максимум 4 такта). Если к шине ISA вообще не подключено ни одной шестнадцатиразрядной карты расширения, можно указать значение NA .

Шина AGP и видеокарты

Расположение опций - пункты меню BIOS FEATURES SETUP, CHIPSET FEATURES SETUP и INTEGRATED PERIPHERALS (AWARD BIOS 4.51PG и AMIBIOS 1.24), Advanced (AWARD BIOS 6.0), Advanced Chipset Features и Integrated Peripherals (AWARD BIOS 6.0PG и AMIBIOS 1.45).

AGP Aperture Size (Graphics Aperture Size, Graphics Windows Size) - максимальный размер оперативной памяти, который может быть использован для хранения текстур видеокарты с интерфейсом AGP. Как правило, оптимальным бывает выделение 64 Мбайт.

AGP-2X (4Х, 8Х) Mode (AGP 4Х Supported, AGP 8X Supported) - поддержка режима AGP2x (4X, 8X). Данный параметр следует устанавливать только в случае, если ваша видеокарта, подключенная к шине AGP, способна без проблем работать в этих режимах. Для всех современных видеокарт поддержка должна быть включена (Enabled).

AGP Mode (AGP Capability) - позволяет указать используемый режим AGP. Для всех современных видеокарт должна быть включена поддержка режима 8Х.

AGP Master1 WS Write - добавление одного такта ожидания при записи данных по шине AGP. Как правило, необходимости в этомнет и данную опцию лучше выключить (Disabled) , и только если видеокарта после этого стала работать нестабильно, появились артефакты, особенно в играх, включите (Enabled) дополнительный такт ожидания.

AGP Fast Write - фактически аналогична опции AGP Master1 WS Write. При включении (Enabled) этой опции данные записываются без задержек, при выключении (Disabled) добавляется один такт ожидания.

AGP Master1 WS Read - добавление одного такта ожидания при чтении данных по шине AGP. Рекомендации те же.

AGP to DRAM Prefetch - включение режима предвыборки, когда следующие данные читаются автоматически. Использование (Enabled) этой опции повышает быстродействие.

PCI/VGA Palette Snoop - позволяет синхронизировать цвета видеокарты и изображения, захватываемого с помощью карты ввода-вывода видео (карты видеомонтажа). Если при захвате видеоцвета отображаются некорректно, включите опцию (Enabled).

Assign IRQ For VGA - включение этой опции предписывает зарезервировать прерывание для видеокарты. Хотя большинство современных видеокарт не испытывают необходимости в отдельном прерывании, с точки зрения совместимости и стабильности работы данную опцию все же лучше включить (Enabled) . И только в случае нехватки свободных прерываний (при большом числе карт расширения) можно попробовать отказаться от резервирования (Disabled).

Стандарт PCI Express является одной из основ современных компьютеров. Слоты PCI Express уже давно занимают прочное место на любой материнской плате декстопного компьютера, вытесняя другие стандарты, например, такие как PCI. Но даже стандарт PCI Express имеет свои разновидности и отличающийся друг от друга характер подключения. На новых материнских платах, начиная примерно с 2010 года, можно увидеть на одной материнской плате целую россыпь портов, обозначенных как PCIE или PCI-E , которые могут отличаться по количеству линий: одной x1 или нескольких x2, x4, x8, x12, x16 и x32.

Итак, давайте выясним почему такая путаница среди казалось бы простого периферийного порта PCI Express. И какое предназначение у каждого стандарта PCI Express x2, x4, x8, x12, x16 и x32?

Что такое шина PCI Express?

В далеких 2000-х, когда состоялся переход с устаревающего стандарта PCI (расш. - взаимосвязь периферийных компонентов) на PCI Express, у последнего было одно огромное преимущество: вместо последовательной шины, которой и была PCI, использовалась двухточечная шина доступа. Это означало, что каждый отдельный порт PCI и установленные в него карты, могли в полной мере использовать максимальную пропускную способность не мешая друг другу, как это происходило при подключении к PCI. В те времена количество периферийных устройств, вставляемых в карты расширения, было предостаточно. Сетевые карты, аудио карты, ТВ-тюнеры и так далее - все требовали достаточное количество ресурсов ПК. Но в отличие от стандарта PCI, использовавшего для передачи данных общую шину с подключением параллельно нескольких устройств, PCI Express, если рассматривать в общем, является пакетной сетью с топологией типа звезда.


PCI Express x16, PCI Express x1 и PCI на одной плате

С точки зрения непрофессионала, представьте свой настольный ПК в качестве небольшого магазина с одним, двумя продавцами. Старый стандарт PCI был как гастроном: все ожидали в одной очереди, чтобы их обслужили, испытывая проблемы со скоростью обслуживания с ограничением в лице одного продавца за прилавком. PCI-E больше похож на гипермаркет: каждый покупатель движется за продуктами по своему индивидуальному маршруту, а на кассе сразу несколько кассиров принимают заказ.

Очевидно, что гипермаркет по скорости обслуживания выигрывает в несколько раз у обычного магазина, благодаря тому, что магазин не может себе позволить пропускную способность больше чем один продавец с одной кассой.

Также и с выделенными полосами передачи данных для каждой карты расширения или встроенными компонентами материнской платы.

Влияние количества линий на пропускную способность

Теперь, чтобы расширить нашу метафору с магазином и гипермаркетом, представьте, что каждый отдел гипремаркета имеет своих кассиров, зарезервированных только для них. Вот тут-то и возникает идея нескольких полос передачи данных.

PCI-E прошел множество изменений со времени своего создания. В настоящее время новые материнские платы обычно используют уже 3 версию стандарта, причем более быстрая 4 версия становится все более распространенной, а версия 5 ожидается в 2019 году. Но разные версии используют одни и те же физические соединения, и эти соединения могут быть выполнены в четырех основных размерах: x1, x4, x8 и x16. (x32-порты существуют, но крайне редко встречаются на материнских платах обычных компьютерах).

Различные физические размеры портов PCI-Express позволяют четко разделить их по количеству одновременных соединений с материнской платой: чем больше порт физически, тем больше максимальных подключений он способен передать на карту или обратно. Эти соединения еще называют линиями . Одну линию можно представить как дорожку, состоящею из двух сигнальных пар: одна для отправки данных, а другая для приема.

Различные версии стандарта PCI-E позволяют использовать разные скорости на каждой полосе. Но, вообще говоря, чем больше полос находится на одном PCI-E-порту, тем быстрее данные могут перетекать между периферийной и остальной частью компьютера.

Возвращаясь к нашей метафоре: если речь идёт об одном продавце в магазине, то полоса x1 и будет этим единственным продавцом, обслуживающим одного клиента. У магазина с 4-мя кассирами - уже 4 линии х4 . И так далее можно расписать кассиров по количеству линий, умножая на 2.


Различные карты PCI Express

Типы устройств, использующих PCI Express x2, x4, x8, x12, x16 и x32

Для версии PCI Express 3.0 общая максимальная скорость передачи данных составляет 8 ГТ/с, В реальности же скорость для версии PCI-E 3 чуть меньше одного гигабайта в секунду на одну полосу.

Таким образом, устройство, использующее порт PCI-E x1, например, маломощная звуковая карта или Wi-Fi-антенна смогут передавать данные с максимальной скоростью в 1 Гбит/с.

Карта, которая физически подходит в более крупный слот - x4 или x8 , например, карта расширения USB 3.0, сможет передавать данные в четыре или восемь раз быстрее соответственно.

Скорость передачи портов PCI-E x16 теоретически ограничивается максимальной полосой пропуская в размере около 15 Гбит/с. Этого более чем достаточно в 2017 года для всех современных графических видеокарт, разработанных NVIDIA и AMD.


Большинство дискретных видеокарт используют слот PCI-E x16

Протокол PCI Express 4.0 позволяет использовать уже 16 ГТ/с, а PCI Express 5.0 будет задействовать 32 ГТ/с.

Но в настоящее время не существует компонентов, которые смогли бы использовать такое количество полос с максимальной пропускной способностью. Современные топовые графические карты обычно используют x16 стандарта PCI Express 3.0. Нет смысла использовать те же полосы и для сетевой карты, которая на порту x16 будет использовать только одну линию, так как порт Ethernet способен передавать данные только до одного гигабита в секунду (что, около одной восьмой пропускной способности одной PCI-E полосы - помните: восемь бит в одном байте).

На рынке можно найти твердотельные накопители PCI-E, которые поддерживают порт x4, но они, похоже, скоро будут вытеснены быстро развивающимся новым стандартом M.2. для твердотельных накопителей, которые также могут использовать шину PCI-E. Высококачественные сетевые карты и оборудование для энтузиастов, такие как RAID-контроллеры, используют сочетание форматов x4 и x8.

Размеры портов и линий PCI-E могут различаться

Это одна из наиболее запутанных задач по PCI-E: порт может быть выполнен размером в форм-факторе x16, но иметь недостаточное количество полос для пропуска данных, например, всего например x4. Это связано с тем, что даже если PCI-E может нести на себе неограниченное количество отдельных соединений, все же существует практический предел пропускной способности полосы пропускания чипсета. Более дешевые материнские платы с более бюджетными чипсетами могут иметь только один слот x8, даже если этот слот может физически разместить карту форм-фактора x16.

Кроме того, материнские платы, ориентированные на геймеров, включают до четырех полных слотов PCI-E с x16 и столько же линий для максимальной пропускной способности.

Очевидно, это может вызывать проблемы. Если материнская плата имеет два слота размером x16, но один из них имеет только полосы x4, то подключение новой графической карты снизит производительность первой аж на 75%. Это, конечно, только теоретический результат. Архитектура материнских плат такова, что Вы не увидите резкого снижения производительности.

Правильная конфигурация двух графических видео карт должна задействовать именно два слота x16, если Вы хотите максимального комфорта от тандема двух видеокарт. Выяснить сколько линий на Вашей материнской плате имеет тот или иной слот поможет руководство на оф. сайте производителя.

Иногда производители даже помечают на текстолите материнской платы рядом со слотом количество линий

Нужно знать, что более короткая карта x1 или x4 может физически вписаться в более длинный слот x8 или x16. Конфигурация контактов электрических контактов делает это возможным. Естественно, если карта физически больше, чем слот, то вставить ее не получится.

Поэтому помните, при покупке карт расширения или обновления текущих необходимо всегда помнить как размер слота PCI Express, так и количество необходимых полос.

PIO – при использовании этого режима считыванием данных с диска управляет ЦП, что приводит к повышенной нагрузке на ЦП и замедлению работы в целом.

В стандартах ATA 2/EIDE и ATA 3 предусмотрено несколько режимов быстрого обмена данными с жесткими дисками. Описание этих режимов составляет существенную часть стандарта, который своим появлением во многом обязан именно этим новым возможностям. Большинство современных быстродействующих жестких дисков может работать в так называемых режимах PIO 3 и PIO 4, скорость обмена данными в которых очень высока. От выбора режима PIO (программируемого вводавывода) зависит скорость обмена данными с жестким диском. В самом медленном режиме (режим 0) длительность одного цикла передачи данных не превышает 600 нс. В каждом цикле передается 16 бит данных, поэтому теоретически возможная скорость обмена в режиме 0 составляет 3,3 Мбайт/с. В большинстве современных жестких дисков поддерживается режим PIO 4, в котором скорость обмена данными достигает 16,6 Мбайт/с.

Режимы обмена данными DMA параллельного ATA

DMA – потоком данных управляет сам накопитель, считывая данные в память или из памяти почти без участия ЦП. ЦП выдает команды на выполнение того или иного действия.

Передача через канал прямого доступа к памяти (DMA) означает, что в отличие от режима PIO данные передаются непосредственно из жесткого диска в системную (основную) память, минуя центральный процессор. Это освобождает процессор от большинства операций обмена данными с диском. К тому же во время передачи данных с диска в память процессор может выполнять другую полезную работу. Существуют два типа прямого доступа к памяти: однословный (8 разрядный) и многословный (16 разрядный). Однословные режимы DMA были удалены из стандарта АТА 3, а также из спецификаций более поздних версий и в настоящее время не используются. Режимы DMA, использующие хостадаптер, который поддерживает технологию управления шиной, получили название режимов Bus Master ATA. В первом случае обработка запросов, захват шины и передача данных осуществляются контроллером DMA на системной плате. Во втором случае все эти операции выполняет дополнительная высокоскоростная микросхема, также смонтированная на системной плате.

  1. Развитие шины PCI. Устройства, работающие на шине PCI

Локальная шина PCI

Шина PCI (Взаимодействие периферийных компонентов) анонсирована Intel в 1992 году на выставке PC Expo.

  • 32-битный канал передачи данных между процессором и периферийными устройствами
  • работает на тактовой частоте 33 МГц
  • Максимальная пропускная способность 120 Мбайт/с

При работе с процессорами i486 шина PCI дает примерно те же показатели производительности, что и шина VL-bus.

Шина PCI является процессорно-независимой (шина VL-bus подключается непосредственно к процессору i486).

PCI работает на частоте 66 МГц.

32 бит – при 33 МГц (132 Мбайт/с).

64 бит – при 33 МГц (264 Мбайт/с), пр 66 МГц (528 Мбайт/с).

Подключаемые устройства: аудиокарты, сетевые карты, видеокарты.

В разъем шины PCI можно подключать карты: имеющие питание в 5 в (ключ 50, 51 контакт), 3.3В (ключ 12,13) и универсальный (ключ в 12, 13, 50, 51 контактах). 32-битный слот имеет по 62 контакта с каждой стороны, 64-битный – 94. Данная шина позволяет подключить до четырех устройств одновременно, то есть может иметь до четырех разъемов. Для использования большего количества подключаемых устройств применяется специальная микросхема - мост шины, для соединения двух шин.

Развитие шины PCI

Год Название
PCI v.1.0
PCI v.2.0 (PCI Plug & Play)
PCI v.2.1 (PCI Power Manager)
PCI v.2.2 (PCI Hot Plug)
PCI-X v.1.0 (Mini PCI)
2001-2002 PCI-X v.2.0 и PCI Express v.1.0 и PCI v.2.3
PCI Express v.1.0a (PCI Express mini, PCI Bridge)
PCI v.3.0, PCI Express x16 (Graphics)
PCI Express v.1.1
PCI Express v.2.0
PCI Express v.3.0
2013-2014 PCI Express v.4.0

PCI 2.2 – допускается 64-бит ширина шины и/или тактовая частота 66 МГц, т.е. пиковая пропускная способность до 533МБ/сек

PCI-X – 64-бит версия PCI 2.2 с увеличенной до 133 МГц частотой (пиковая пропускная полоса 1066МБ/сек)

PCI-X 266 (PCI-X DDR), DDR версия PCI-X (эффективная частота 266 МГц, реальная 133 МГц с передачей по обоим фронтам тактового сигнала, пиковая пропускная полоса 2.1 ГБ/сек

PCI-X 533 (PCI-X QDDDR)6 QDR версия PCI-X (эффективная частота 533 МГц, пиковая пропускная полоса 4.3 ГБ/сек)

Mini PCI – PCI с разъемом в стиле SO-DIMM, применяется преимущественно для миниатюрных сетевых, модемных и прочих карточек в ноутбуках

Compact PCI – стандарт на форм фактор (модули вставляются с торца в шкаф с общей шиной на задней плоскости) и разъем, предназначенные в первую очередь для промышленных компьютеров и других критических применений

Accelerated Graphics Port (AGP) – высокоскоростная версия PCI, оптимизированная для графических ускорителей

Реальная частота – частота, на которой передаются данные (частота тактового генератора).

Эффективная частота – частота соответствующая стандарту (реальная частота умноженная на число бит передающихся за один такт). Если за один такт передается два бита данных, то эффективная частота будет в два раза больше реальной.

Локальная шина PCI для мобильных ПК

  • PCI Express для мобильных устройств в виде стандарта ExspressCard.
  • Первыми поддержку модулей получили ноутбуки и миниатюрные настольные ПК.

Технология ExpressCard заменила все устаревшие параллельные шины, в большинстве используются современные интерфейса – PCI Express, USB 3.0

Локальная шина PCI

На одной шине PCI не более 4 устройств (слотов).

PCI Bridge – (мост шины) аппаратные средства подключения PCI к другим шинам.

  • Host Bridge главный мост – для подключения PCI к шине процессора
  • Peer to Peer Bridge одноранговый мост – для соединения двух шин PCI

Производительность PCI:

GT/s – giga-transfers/second (миллиардов пересылок в секунду). Используется как численная характеристика скорости работы с оперативной памятью процессоров Intel.

Реальная скорость работы памяти зависит от процессора.

Преобразование в Гбит/с для PCIe 3.0 (8x):

64GT/s*(128b/130b) – 63.01Gbps

Локальная шина PCIe

PCI Express 2.0 сигнальная скорость передачи составляет 5 GT/s, то есть пропускная способность равняется 500 Мбайт/с для каждой линии.

PCI Express 2.0, которой обычно используется 16 линий, обеспечивает двунаправленную пропускную способность до 8 Гбайт/с.

Стандарт PCI Experss 2.0 использует схему кодирования 8b/10b, где 8 бит данных передаются в виде 10-битных символов для алгоритма устранения ошибок. В итоге мы получаем 20% избыточность, то есть снижение полезной пропускной способности.

PCI Express 3.0 использует сигнальную скорость 8 GY/s, что дает пропускную способность 1 Гбайт/с на линию (16 Гбайт/с).

PCI Express 3.0 переходит на более эффективную схему кодирования 1128b/130b, устраняя 20% избыточность.

8 GT/s – это «теоретическая» скорость, а фактическая, сравнимая по производительности с сигнальной скоростью 10 GT/s, если бы не использовался принцип кодирования 8b/10b.

В 2011 организация PCI SIG анонсировала стандарт компьютерной шины PCI Express (PCIe) 4.0, который обеспечит рекордную пропускную способность 16 гигатрансферов в секунду на одну линию, что вдвое превышает предельную скорость шины PCIe 3.0.

16 GT/sсоответствует скорости примерно 2 Гб/с на одну линию x1.

  1. Шина USB. История развития, виды, характеристики. Отличие от IEEE 1394 FireWire

Шина USB

Compaq, DEC, IBM, Intel, NEC и др. (1993)

Требования к проекту:

  • пользователи не должны устанавливать переключатели и перемычки
  • пользователи не должны разбирать системный блок
  • должен существовать единый разъем для подключения устройств
  • устройства ввода-вывода должны получать питание через кабель
  • возможность подключить до 127 устройств
  • поддержка устройств реального времени
  • возможность установки оборудования без перезагрузки и выключения ПК
  • небольшие затраты на производство

Шина USB 1.0

В 1996 году USB 1.0 (Universal Serial Bus) – универсальная последовательная шина.

Промышленный стандарт расширения архитектуры ПК, ориентированный на интеграцию с периферийными устройствами.

2 режима скорости передачи данных:

  • Low Speed (1,5 Мбит/с) – клавиатура, джойстик, мышь
  • Full Speed (12 бит/с) – модемы, сканеры, принтеры

В 1998 году USB 1.1 – исправления проблем

Шина USB 2.0

В 2000 году USB 2.0

Добавляется еще один режим работы High Speed 480 Мбит/с для высокоскоростных устройств (HDD, цифровые камеры и др.).

Шина USB 3.0

В 2008 году USB 3.0

Пропускная способность USB 3.0 и USB 3.1 Gen1 – 5 Гбит/с.

Новый интерфейс USB 3.0 получил название SuperSpeed USB (Суперскоростной или Сверхскоростной USB).

USB 3.0 сохраняет полную совместимость с уже существующим оборудованием стандарта USB 2.0.

Чтобы гарантировать надежную передачу данных интерфейс USB 3.0 использует кодирование 8/10 бит.

Один байт (8 бит) передается с помощью 10-битного кодирования, что улучшает надежность передачи в ущерб пропускной способности.

Ø Стандарт эффективно оптимизирует энергопотребление

Ø Интерфейс USB 2.0 постоянно опрашивает доступность устройств, на что расходуется энергия

Ø Интерфейс USB 3.0 имеет четыре состояния подключения, (U0-U3).

1) Состояние подключения U0 соответствует активной передаче данных.

2) Если подключение бездействует, то в состоянии U1 будут отключены возможности приема и передачи данных.

3) Состояние U2 отключает внутренние тактовые импульсы.

4) Состояние U3 погружает устройство в «сон».

Стандарт USB 3.0 обратно совместим с USB 2.0.

Контакты USB 2.0 остались на прежнем месте, но в глубине разъема теперь располагаются пять новых контактов.

Шина USB 3.1

В 2015 году USB 3.1 b и новый разъем USB Type C

USB 3.1 SuperSpeed+

Особенность USB 3.1 Gen2 – это увеличенная до 10 Гбит/с теоретическая пропускная способность

Новые контроллеры Thunderbolt обеспечивают 20 Гбит/с, а перспективные 40 Гбит/с

На CES 2015 представители USB-IF собрали стенд с парой SSD в массив RAID 0, подключенный по USB 3.1. Тестовая утилита CrystalDisk Benchmark показала линейную скорость записи 817 МБ/с.

Спецификации USB Power Delivery 2.0 предусматривают повышение допустимой силы тока с 900 мА у портов USB 3.0, до 5000 мА у USB 3.1

Гарантировано хватит для питания емких внешних жестких дисков и других мощных потребителей от одного порта.

Порт USB Type-C позволит со временем обеспечить питание практически всем устройствам мощностью до ста ватт.

Особенностью USB-C стал симметричный дизайн разъема, позволяющий подключать его к порту любой стороной. По габаритам он идентичен MicroUSB (8,3*2,5 мм).

Восемь контактов USB 3.1 могут быть одновременно использованы как для передачи файлов, так и для подключения монитора через DisplayPort.

Остальные обеспечивают питание и подключение устройств со старым интерфейсом uSB 2.0 – таких, как клавиатура и мыши.

Отличие от IEEE 1394 FireWire
Последовательные интерфейсы FireWire и USB, имея общие черты, являются существенно различными технологиями. Обе шины обеспечивают простое подключение большого числа ПУ (127 для USB и 63 для FireWire), допуская ком- мутации и включение/выключение устройств при работающей системе. Топология обеих шин достаточно близка. Хабы USB входят в состав ЦУ; для пользователя их присутствие незаметно. Обе шины имеют линии питания устройств, но допустимая мощность для FireWire значительно выше. Обе шины поддерживают систему РпР (автоматическое конфигурирование при включении/выключении) и снимают проблему дефицита адресов, каналов DMA и прерываний. Различаются пропускная способность и управление шиной.

USB ориентирована на ПУ, подключаемые к PC. Ее изохронные передачи позволяют передавать только цифровые аудиосигналы. Все передачи управляются централизованно, и PC является необходимым управляющим узлом, находящимся в корне древовидной структуры шины. Соединение нескольких PC этой шиной не предусматривается.

FireWire ориентирована на интенсивный обмен между любыми подключенными к ней устройствами. Изохронный трафик позволяет передавать "живое" видео. Шина не требует централизованного управления со стороны PC. Возможно использование шины для объединения нескольких PC и ПУ в локальную сеть.

Новые устройства цифрового видео и аудио имеют встроенные адаптеры 1394. Подключение к шине FireWire традиционных аналоговых и цифровых устройств (плееров, камер, мониторов) возможно через адаптеры-преобразователи интерфейсов и сигналов. Стандартные однотипные кабели и разъемы FireWire заменяют множество разнородных соединений устройств бытовой электроники с PC. Разнотипные цифровые сигналы мультиплексируются в одну шину. В отличие от сетей Ethernet, высокоскоростные передачи потоков данных по FireWire в реальном времени не требуют дополнительных протоколов. Кроме того, имеются средства арбитража, гарантирующие доступ к шине за заданное время. Применение мостов в сетях FireWire позволяет изолировать трафик групп узлов друг от друга.

  1. Логическая структура поверхности логического диска

Логический диск или том (volume или partition) - часть долговременной памяти компьютера, рассматриваемая как единое целое для удобства работы. Термин «логический диск» используется в противоположность «физическому диску», под которым рассматривается память одного конкретного дискового носителя.

Диски относятся к машинным носителям информации с прямым доступом. Понятие прямой доступ означает, что ПК может "обратиться" к дорожке, на которой начинается участок с искомой информацией или куда нужно записать новую информацию, непосредственно, где бы ни находилась головка записи/чтения накопителя.

Накопители на дисках более разнообразны:

  • накопители на гибких магнитных дисках (НГМД), иначе, на флоппи-дисках или на дискетах;
  • накопители на жестких магнитных дисках (НЖМД) типа "винчестер";
  • накопители на сменных жестких магнитных дисках, использующие эффект Бернулли;
  • накопители на оптических компакт-дисках CD-ROM (Compact Disk ROM);
  • накопители на оптических дисках типа СС WORM (Continuous Composite Write Once Read Many - однократная запись - многократное чтение);
  • накопители на магнитооптических дисках (НМОД) и др.

Магнитные диски (МД) относятся к магнитным машинным носителям информации. В качестве запоминающей среды у них используются магнитные материалы со специальными свойствами (с прямоугольной петлей гистерезиса), позволяющими фиксировать два магнитных состояния - два направления намагниченности. Каждому из этих состояний ставятся в соответствие двоичные цифры: 0 и 1. Накопители на МД (НМД) являются наиболее распространенными внешними запоминающими устройствами в ПК. Диски бывают жесткими и гибкими, сменными и встроенными в ПК.

Устройство для чтения и записи информации на магнитном диске называется дисководом .

Все диски: и магнитные, и оптические характеризуются своим диаметром или, иначе, форм-фактором. Наибольшее распространение получили диски с форм-факторами 3,5" (89 мм). Диски с форм-фактором 3,5" при меньших габаритах имеют большую емкость, меньшее время доступа и более высокую скорость чтения данных подряд (трансфер), более высокие надежность и долговечность.

Информация на МД (рис.4.) записывается и считывается магнитными головками вдоль концентрических окружностей - дорожек (треков). Количество дорожек на МД и их информационная емкость зависят от типа МД, конструкции накопителя на МД, качества магнитных головок и магнитного покрытия.

Рис. 4. Логическая структура поверхности магнитного диска

Каждая дорожка МД разбита на сектора . Сектор - наименьшая адресуемая единица обмена данными дискового устройства с оперативной памятью. Для того чтобы контроллер мог найти на диске нужный сектор, необходимо задать ему все составляющие адреса сектора: номер поверхности, номер цилиндра (дорожки) и номер сектора.

В одном секторе дорожки помещено обычно 512 байт данных. Обмен данными между НМД и ОП осуществляется последовательно целым числом секторов.

Кластер - это минимальная единица размещения информации на диске, состоящая из одного или нескольких смежных секторов дорожки.

При записи и чтении информации МД вращается вокруг своей оси, а механизм управления магнитной головкой подводит ее к дорожке, выбранной для записи или чтения информации.

Данные на дисках хранятся в файлах, которые обычно отождествляют с участком (областью, полем) памяти на этих носителях информации.

Файл - это именованная область внешней памяти, выделенная для хранения массива данных.

Поле памяти создаваемому файлу выделяется кратным определенному количеству кластеров. Кластеры, выделяемые одному файлу, могут находиться в любом свободном месте дисковой памяти и необязательно являются смежными. Файлы, хранящиеся в разбросанных по диску кластерах, называются фрагментированными.

Для пакетов магнитных дисков (диски установлены на одной оси) и для двухсторонних дисков вводится понятие "цилиндр".

Цилиндром называется совокупность дорожек МД, находящихся на одинаковом расстоянии от его центра.

  1. Внешние устройства ПК. Классификация и подробное описание.

Внешние устройства

  • Внешние запоминающиеся устройства или внешняя память
  • Устройства ввода информации
  • Устройства вывода информации
  • Средства мультимеда

Внешняя память относится к внешним устройствам ПК и используется для долговременного хранения любой информации.

Классификация по признакам:

  • По виду носителя
  • По типу конструкции
  • По принципу записи и чтения информации
  • По метода доступа и др

Классификация ВЗУ

1) Внешние

· Ленточные

· Бобинные

· Кассетные

3) Дисковые

· Магнитные

· Сменные

· Несменные

· Оптические

· Смешанные

Дискеты

  • 3,5 дюйма
  • 1,44 Мбайт
  • 300 об/мин

Вызывает повреждение:

  • Деформирование дискеты
  • Открытие защитной шторки
  • Воздействие магнитом

HDD - Hard Disk Drive (ЖМД) – жесткий магнитный диск

  • Частота вращения: 7200 об/мин, 10000 об/мин
  • Подключение: IDE, SATA
  1. Audio CD

· Диаметр 12 см

· 74-80 минут звука

  1. CD-ROM, CD-R, CD-RW

· 650-700 Мбайт

CD-ROM – только чтение

CD-R – однократная запись

CD-RW - многократная запись

  1. мини CD (-R, RW)

· Диаметр 8 см

· 24 минуты звука, 210 Мбайт

Достоинства:

  • надежность, долговечность
  • низкая стоимость

Недостатки:

DVD (Video Disk) -лазер с меньшей длиной волны

1) Однослойные

  • Односторонние 4,7 Гбайт
  • Двухсторонние 9,4 Гбайт

2) Двухслойные

  • Односторонние 8,5
  • Двухсторонние 17,1

DVD-ROM - только чтение

DVD-R, DVD+R - однократная запись

DVD-RW, DVD-RW - многократная запись (1000 циклов)

HD DVD – high definition DVD (высокой четкости)

Разработка: Toshiba совместно с NEC и SANYO

Поддерживают: Microsoft, Intel

Blu-ray Disk

Blu-ray Disk (BD) – формат оптического диска высокой плотности для хранения данных или видео высокой четкости, использующий диски стандартного диаметра 12 и 8 см и голубой лазер с длинной волны 405 нм.

BD-RE (перезаписываемые)

На основе микросхем памяти (до 1 Тб) (ноутбуки, нетбуки, телефоны, планшеты)

Достоинства:

Недостатки:

  • Ограниченное количество циклов записи (100000)
  • Высокая цена

Стример

Стример - устройство для резервного копирования данных с винчестера на магнитную ленту.

Достоинства:

  • Емкость до 4 Тбайт
  • Дешевая магнитная лента
  • Надежность
  • Высокая скорость (до 160 Мб/с)

Недостатки:

  • Последовательный доступ к данным (перематывать» в нужное место)
  • Низкая скорость поиска
  • Только для потока данных, крайне сложно работать с отдельными файлами

Производители: Sony, IBM, Hewlett Packard

Внешние устройства

  1. Устройства ввода информации

· клавиатура - устройство для ручного ввода в компьютер числовой, текстовой и управляющей информации;

· графические планшеты (дигитайзеры) - для ручного ввода графической информации, изображений путем перемещения по планшету специального указателя (пера); при перемещении пера автоматически выполняется считывание координат его местоположения и ввод этих координат в компьютер;

· сканеры (читающие автоматы) - для автоматического считывания с бумажных носителей и ввода в компьютер машинописных текстов, графиков, рисунков, чертежей;

· устройства указания (графические манипуляторы) - для ввода графической информации на экран монитора путем управления движением курсора по экрану с последующим кодированием координат курсора и вводом их в компьютер (джойстик, мышь, трекбол, световое перо);

· сенсорные экраны - для ввода отдельных элементов изображения, программ или команд с полиэкрана дисплея в компьютер).

· цифровые фото/видеокамеры позволяют получать видеоизображение и фотоснимки непосредственно в цифровом формате.

  1. Устройства вывода информации

· графопостроители (плоттеры) - для вывода графической информации на бумажный носитель;

· принтеры - печатающие устройства для вывода информации на бумажный носитель.

Основные виды принтеров:

  • матричные - изображение формируется из точек, печать которых осуществляются тонкими иглами, ударяющими бумагу через красящую ленту. Знаки в строке печатаются последовательно. Количество иголок в печатающей головке определяет качество печати. Недорогие вдринтеры имеют 9 иголок. Более совершенные матричные принтеры имеют 18 и 24 иглы;
  • струйные - в печатающей головке имеются тонкие трубочки - сопла, через которые на бумагу выбрасываются мельчайщие капельки чернил. Матрица печатающей головки обычно содержит от 12 до 64 сопел. В на-Встоящее время струйные принтеры обеспечивают разрешающую способность до 50 точек на миллиметр и скорость печати до 500 знаков в секунду при отличном качестве печати, приближающемся к качеству лазерной печати. Струйные принтеры выполняют и цветную печать, но разрешающая способность при этом уменьшается примерно вдвое;
  • лазерные - применяется электрографический способ формирования изображений. Лазер служит для создания сверхтонкого светового луча, вычерчивающего на Поверхности предварительно заряженного светочувствительного барабана контуры невидимого точечного электронного изображения. После проявления электронного Воображения порошком красителя (тонера), налипающей на разряженные участки, выполняется печать - перенoc тонера с барабана на бумагу и закрепление изображения на бумаге разогревом тонера до его расплавления. Лазерные принтеры обеспечивают наиболее высококачественную печать с высоким быстродействием. Широко используются цветные лазерные принтеры.

Диалоговые средства пользователя

  • видеотерминалы (мониторы) - устройства для отображения вводимой и выводимой информации. Видеотерминал состоит из видеомонитора (дисплея) и видеоконтроллера (видеоадаптера). Видеоконтроллеры входят в состав системного блока компьютера (находятся на видеокарте, устанавливаемой в разъем материнской платы). Видеомониторы относятся к внешним устройствам компьютера. Основной характеристикой монитора является разрешающая способность, которая определяется максимальным количеством точек, размещающихся по горизонтали и по вертикали на экране монитора. Современные мониторы имеют стандартные значения разрешающей способности от 640 X 480 до 1600 х 1200, но реально могут быть и другие значения. Могут использоваться как цветные, так и монохромные мониторы;

Основной характеристикой монитора является максимальное количество точек размещающихся по горизонтали и по вертикали на экране.

Размер экрана задается величиной его диагонали в дюймах

Например: 17"", 42"", 48""

Разрешение экрана от 640*480px, 5120*2880px

  • устройства речевого ввода-вывода информации. К ним относятся различные микрофонные акустические системы, а также различные синтезаторы звука, выполняющие преобразование цифровых кодов в буквы и слова, воспроизводимые через динамики или звуковые колонки, подсоединенные к компьютеру.

Средства связи и телекоммуникации

· Сетевые адаптеры (модем - модулятор-демодулятор) используются для подключения компьютера к каналам связи, другим компьютерам и компьютерным сетям.

· Факсы- это устройства факсимильной передачи (точное воспроизведение графического оригинала (подписи, документа и т.д.) средствами печати) изображения по телефонной сети.

· Факс-модемы - модемы, которые могут передавать и получать данные как факс.

  1. Внешние устройства ПК (типы портов ввода-вывода, классификация). Понятие мультимедиа.

VESA (Video Electronics Standards Association - ассоциация стандартизации видеоэлектроники) опубликовала стандарт DisplayPort 1.3.

Пропускная способность до 32,4 Гбит/с (8,1 Гбит/с в каждой из четырех линий). С учетом накладных расходов на передачу скорости несжатого потока видео может достигать 25,92 Гбит/с.

Преобразование видео в vga, dvi, hdvi

Поддержка HDCP 2.2 и hdmi 2.0 с cec (применение в телевизионных приложениях, защита от копирования)

Поддержка формата 4:2:0, используется в потребительских телевизионных интерфейсах

Улучшены возможности по части передачи Display Port одновременно с видео других данных, например USB 3.0

Список портов ввода-вывода, обычно использующихся в персональном компьютере:

  1. Параллельный (LPT)
  2. Последовательный (COM)
  3. Игровой
  4. Разъем Ethernet
  5. Разъем PS/2 (мышь)
  6. Разъем PS/2 (клавиатура)
  7. VGA-разъем и прочие видеовыходы
  8. Аудиоразъемы для подключения динамиков, микрофона, и.т.д.

Порты в/в на материнской плате форм-фактора ATX:

1 – Разъем PS/2 (мышь); 2 – Разъем PS/2 (клавиатура); 3 – Выход Ethernet; 4 – Два разъема USB; 5 – Разъем последовательного порта; 6 – Разъем параллельного порта; 7 – Разъем VGA; 8 – Игровой порт; 9 – Аудиопорты (слева направо: линейный выход, вход, микрофон).

Параллельный порт (LPT)

Главная особенность параллельного порта – одновременная передача данных по нескольким линиям. Эта черта сближает LPT с внутренними шинами компьютера. Основное назначение параллельного порта – подключения внешних устройств, и в большинстве случаев таким устройством является принтер.

Первые версии параллельного порта имели одностороннюю направленность, то есть, данные по кабелю могли передаваться лишь в одну сторону – к периферийному устройству. В дальнейшем были введены усовершенствованные стандарты интерфейса LPT, в которых данные могли передаваться в обе стороны.

Последовательный порт (COM)

Этот порт отличает последовательная передача данных по одной линии. Последовательная передача означает, что биты информации передаются по линии один за другим. Кроме того, передача данных в последовательном порту является двунаправленной. Как правило, COM предназначен для подключения таких периферийных устройств, как мышь или модем. В качестве разъема порта на материнской плате компьютера используется 9-штырьковый разъем DE-9 типа «вилка».

Игровой порт

На сегодняшний день этот порт не так уж часто встречается на материнских платах. Кроме того, его не поддерживают современные операционные системы, такие, как Windows 7. Тем не менее, его до сих пор можно увидеть на звуковых картах. Разъемом порта является коннектор c 15-ю контактами.

Как можно догадаться из названия порта, он предназначен, прежде всего, для подключения джойстиков. Особенностью порта является возможность подключить к нему сразу два устройства. Кроме того, в звуковых картах игровой порт часто используется для подключения MIDI – устройств, например, таких, как синтезаторы. Поскольку он способен работать с аналоговыми и аналого-цифровыми устройствами, то в обслуживающую его микросхему встроен аналого-цифровой преобразователь.

Разъем PS/2 используется в компьютере для подключения мыши и/или клавиатуры. Несмотря на то, что он был разработан довольно давно, еще в середине 1980-x, тем не менее, он до сих активно используется в компьютерах. В некоторых материнских платах находятся два универсальных разъема, к которым можно подключить и мышь, и клавиатуру, в других же существует два отдельных разъема для мыши и клавиатуры. При этом разъем зеленого цвета предназначен для подключения мыши, синего – для клавиатуры. Оба разъема выполнены в формате mini-DIN c 9 контактами.

Порт USB, о котором будет подробно рассказано в отдельной статье, является наиболее скоростным, универсальным и производительным портом в/в в современных компьютерах. Именно по этой причине USB практически вытеснил многие другие порты. Обычно в компьютере используется несколько разъемов для подключения устройств USB.

Мультимедиа - интерактивная система, обеспечивающая одновременное представление различных медиа - звук, анимированная компьютерная графика, видеоряд. Например, в одном объекте-контейнере (container ) может содержаться текстовая, аудиальная, графическая и видеоинформация, а также, возможно, способ интерактивного взаимодействия с ней.

Средства мультимедиа - это комплекс аппаратных и программных средств, позволяющих человеку общаться компьютером, используя самые разные естественные для себя среды: звук, видео, графику, тексты, анимацию и др. К средствам мультимедиа относятся:

  • устройства речевого ввода и вывода информации;
  • микрофоны и видеокамеры, акустические и видеовоспроизводящие системы с усилителями, звуковыми колонками, большими видеоэкранами;
  • звуковые и видеоплаты, платы видеозахвата, снимающие изображение с видеомагнитофона или видеокамеры и вводящие его в компьютер;
  • сканеры;
  • внешние запоминающие устройства большой емкости на оптических дисках, часто используемые для записи звуковой и видеоинформации
  • редакторы видеоизображений;
  • профессиональные графические редакторы;
  • средства для записи, создания и редактирования звуковой информации, позволяющие подготавливать звуковые файлы для включения в программы, изменять амплитуду сигнала, наложить или убрать фон, вырезать или вставить блоки данных на каком-то временном отрезке;
  • программы для манипуляции с сегментами изображений, изменения цвета, палитры;
  • программы для реализации гипертекстов и др.