Арифметические операции с числами в позиционных системах счисления. Арифметические операции в позиционных системах счисления. Умножение и деление Арифметические операции в различных системах

Кроме десятичной существует неизмеримое количество других систем, при этом некоторые из них используются для представления и обработки информации в компьютере. Существуют два вида систем счисления: позиционные и непозиционные.

Непозиционными системами называются такие, у которых каждая цифра сохраняет свое значение независимо от места нахождения в числе. Примером может служить римская система счисления, в которой используются такие цифры как I, V, X, L, C, D, M и т.д.

Позиционными называются системы счисления, в которых значение каждой цифры зависит от её места положения. Позиционная система характеризуется основой исчисления, под которой будет пониматься такое число £, которое показывает, сколько единиц какого-либо разряда необходимо для получения единица старшего порядка.

Например, можно записать

Что соответствует числам в десятичной системе счисления

Индекс снизу указывает на основу счисления.

Для перевода положительных чисел, из одной системы счисления в другую известны два правила:

Перевод чисел из системы , в систему;

Перевод чисел из системы , в системус использованием арифметики системы;

Рассмотрим первое правило . Допустим, число в десятичной системе необходимо представить в двоичной системе . Для этого данное число делится на основание системы представленное в системе , т.е. на 2 10 . Остаток от деления будет младшим разрядом двоичного числа. Целая часть результата от деления вновь делится на 2. Операцию деления повторять столько раз, пока частное не будет меньше двух.

Пример: 89 10 перевести в двоичное число, пользуясь арифметикой десятичной системы счисления

89 10 → 1011001 2

Обратный перевод, согласно того же правила, следующий:

1011001 2 перевести в десятичное число, пользуясь арифметикой двоичной системы счисления

Двоичные числа 1000 и 1001 согласно таблице 2.1 соответственно равны 8 и 9. Поэтому 1011001 2 → 89 10

Иногда обратный перевод удобнее осуществлять, пользуясь общим правилом представления числа в какой-либо системе исчисления.

Рассмотрим второе правило. Перевод чисел из системы , в системус использованием арифметики системы. Для осуществления перевода необходимо каждую цифру числа в системеумножить на основание системы счисленияпредставленной в системе счисленияи в степени позиции этого числа. После чего полученные произведения суммируются.

Арифметические и логические операции

Арифметические операции

Рассмотрим арифметику двоичной системы счисления, так как именно она используется в современных компьютерах по следующим причинам:

Существуют простейшие физические элементы, которые имеют только два состояния и которые можно интерпретировать как 0 и 1;

Арифметическая обработка очень проста.

Числа в восьмеричной и шестнадцатеричной системах счисления обычно используется как средство замены длинного и поэтому неудобного представления двоичных чисел.

Операции сложения, вычитания и умножения в двоичной системе имеют вид:

Как уже было продемонстрировано ранее, чтобы обойтись только сумматором, то есть выполнять лишь операции сложения, операция вычитания заменена на сложение. Для этого код отрицательного числа формируется как дополнение до чисел 2, 10, 100 и т.д.

Система счисления (СС)-это совокупность приёмов и правил записи чисел с помощью определенного набора символов.
Алфавит СС - набор символов(цифр), используемых для записи числа.
Основание СС (мощность алфавита СС) - количество символов(цифр) алфавита СС.
Все системы счисления делятся на позиционные и непозиционные . Непозиционная система счисления - это система, в которой количественный эквивалент каждой цифры не зависит от ее положения (места, позиции) в записи числа.
Итак, в непозиционных системах счисления позиция, которую цифра занимает в записи числа, роли не играет. Так, например, римская система счисления непозиционная. В числах XI и IX "вес” обоих цифр одинаков, несмотря на их месторасположение.

Позиционные системы счисления

Позиционная система счисления это система, в которой значение цифры зависит от ее места (позиции) в записи числа. Основание системы счисления количество знаков или символов, используемых для изображения числа в данной системе счисления
Основание системы счисления определяет её название: основание p - p-ая система счисления.
Например, система счисления в основном, применяемая в современной математике, является позиционной десятичной системой, её основание равно десяти. Для записи любых чисел в ней используется десять всем хорошо известных цифр (0,1,2,3,4,5,6,7,8,9).

Итак, мы сказали, что в позиционных системах счислениях имеет значение позиция, которую цифра занимает в записи числа. Так, запись 23 означает, что это число можно составить из 3 единиц и 2 десятков. Если мы поменяем позиции цифр, то получим совсем другое число – 32. Это число содержит 3 десятка и 2 единицы. «Вес» двойки уменьшился в десять раз, а «вес» тройки в десять раз возрос. Развернутая запись числа
Любое число N в позиционной системе счисления с основанием p может быть представлено в виде многочлена от p :
N=a k p k + a k-1 p k-1 +a k-2 p k-2 +...+a 1 p 1 +a 0 p 0 +a -1 p -1 +a -2 p -2 +...,
где N - число, p - основание системы счисления (p>1), a i - цифры числа (коэффициенты при степени p).
Числа в p-ой системе счисления записываются в виде последовательности цифр:
N=a k a k-1 a k-2 ...a 1 a 0 , a -1 a -2...
Запятая в последовательности отделяет целую часть числа от дробной.
3210 -1-2
N=4567,12 10 =4 *10 3 +5 *10 2 +6 *10 1 +7 *10 0 +1 *10 -1 +2 *10 -2

Двоичная система счисления

Для записи чисел используются только две цифры – 0 и 1. Выбор двоичной системы для использования в компьютере объясняется тем, что электронные элементы, из которых строятся ЭВМ, могут находиться только в двух хорошо различимых состояниях. По существу эти элементы представляют собой выключатели. Как известно выключатель либо включен, либо выключен. Третьего не дано. Одно из состояний обозначается цифрой 1, другое – 0. Благодаря таким особенностям двоичная система стала стандартом при построении ЭВМ.
В этой системе счисления любое число может быть представлено в виде:
N=a k 2 k + a k-1 2 k-1 +a k-2 2 k-2 +...+a 1 2 1 +a 0 2 0 +a -1 2 -1 +a -2 2 -2 +....
Например:11001,01 2 =1 *2 4 +1 *2 3 +0 *2 2 +0 *2 1 +1 *2 0 +0 *2 -1 +1 *2 -2 (развернутая запись числа в двоичной системе счисления)

Двоичная арифметика

Арифметические операции во всех позиционных системах счисления выполняются по одним и тем же хорошо известным правилам.

Сложение

Рассмотрим сложение чисел в двоичной системе счисления. В основе лежит таблица сложения одноразрядных двоичных чисел:

0+0=0
0+1=1
1+0=1
1+1=10
1+1+1=11

Важно обратить внимание на то, что при сложении двух единиц происходит переполнение разряда и производится перенос в старший разряд. Переполнение разряда наступает тогда, когда величина числа в нем становится равной или больше основания системы счисления. Для двоичной системы счисления эта величина равна двум.
Сложение многоразрядных двоичных чисел происходит в соответствие с вышеприведенной таблицей сложения с учетом возможных переносов из младших разрядов с старшие.

Вычитание

Рассмотрим вычитание двоичных чисел. В основе лежит таблица вычитания одноразрядных двоичных чисел. При вычитании из меньшего числа (0) большего (1) производится заем из старшего разряда. В таблице заем обозначается 1 с чертой.

0-0=_0
0-1=11
1-0=1
1-1=0

Сложение и вычитание одноразрядных двоичных чисел
Сложение и вычитание многоразрядных двоичных чисел (примеры)

Умножение

В основе умножения лежит таблица умножения одноразрядных двоичных чисел:

0*0=0
0*1=0
1*0=0
1*1=1

Умножение многоразрядных двоичных чисел происходит в соответствии с приведенной таблицей умножения по обычной схеме, применяемой в десятичной системе счисления, с последовательным умножением множимого на очередную цифру множителя.

Деление

Операция деления выполняется по алгоритму, подобному алгоритму выполнения операции деления в десятичной системе счисления.

Рассмотрим основные арифметические операции: сложение, вычитание, умножение и деление. Правила выполнения этих операций в десятичной системе хорошо известны - это сложение, вычитание, умножение столбиком и деление углом. Эти правила применимы и ко всем другим позиционным системам счисления. Только надо пользоваться особыми таблицами сложения и умножения для каждой системы.

1. Сложение

Таблицы сложения легко составить, используя правила счета.

При сложении цифры суммируются по разрядам, и если при этом возникает избыток, то он переносится влево.

Пример 1. Сложим числа 15 и 6 в различных системах счисления .

Пример 2. Сложим числа 15, 7 и 3.

Шестнадцатеричная : F 16 +7 16 +3 16

15+7+3 = 25 10 = 11001 2 = 31 8 = 19 16 .

Проверка:

11001 2 = 2 4 + 2 3 + 2 0 = 16+8+1=25,

31 8 = 3 . 8 1 + 1 . 8 0 = 24 + 1 = 25,

19 16 = 1 . 16 1 + 9 . 16 0 = 16+9 = 25.

Пример 3. Сложим числа 141,5 и 59,75 .

Ответ: 141,5 + 59,75 = 201,25 10 = 11001001,01 2 = 311,2 8 = C9,4 16

Проверка. Преобразуем полученные суммы к десятичному виду :

11001001,01 2 = 2 7 + 2 6 + 2 3 + 2 0 + 2 -2 = 201,25

311,2 8 = 3 . 8 2 + 1 . 8 1 + 1 . 8 0 + 2 . 8 -1 = 201,25

C9,4 16 = 12 . 16 1 + 9 . 16 0 + 4 . 16 -1 = 201,25

2. Вычитание

Вычитание в двоичной системе счисления

уменьшаемое

вычитаемое

0

1

0

1

заем

Вычитание в шестнадцатеричной системе счисления

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

Заем единицы из старшего разряда

Вычитание в восьмеричной системе счисления

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

Заем единицы из старшего разряда

Пример 4. Вычтем единицу из чисел 10 2 , 10 8 и 10 16

Пример 5. Вычтем единицу из чисел 100 2 , 100 8 и 100 16 .

Пример 6. Вычтем число 59,75 из числа 201,25.

Ответ: 201,25 10 - 59,75 10 = 141,5 10 = 10001101,1 2 = 215,4 8 = 8D,8 16 .

Проверка. Преобразуем полученные разности к десятичному виду:

10001101,1 2 = 2 7 + 2 3 + 2 2 + 2 0 + 2 -1 = 141,5;

215,4 8 = 2 . 8 2 + 1 . 8 1 + 5 . 8 0 + 4 . 8 -1 = 141,5;

8D,8 16 = 8 . 16 1 + D . 16 0 + 8 . 16 -1 = 141,5.

Системы счисления.

Системой счисления называют совокупность символов (цифр) и правил их использования для представления чисел.

Существуют позиционные и непозиционные системы счисления.

В непозиционных системах вес цифры (т.е. тот вклад, который она вносит в значение числа) не зависит от ее позиции в записи числа. Так, в римской системе счисления в числе ХХХII (тридцать два) вес цифры Х в любой позиции равен просто десяти.

В позиционных системах счисления вес каждой цифры изменяется в зависимости от ее положения (позиции) в последовательности цифр, изображающих число. Например, в числе 757,7 первая семерка означает 7 сотен, вторая – 7 единиц, а третья – 7 десятых долей единицы.

Сама же запись числа 757,7 означает сокращенную запись выражения

700 + 50 + 7 + 0,7 = 7 10 2 + 5 10 1 + 7 10 0 + 7 10 -1 = 757,7.

Любая позиционная система счисления характеризуется своим основанием.

Основание позиционной системы счисления - это количество различных знаков или символов, используемых для изображения цифр в данной системе.

Возможно бесчисленное множество позиционных систем : двоичная, троичная, четверичная и т.д. Запись чисел в каждой из систем счисления с основанием q означает сокращенную запись выражения

a n-1 q n-1 + a n-2 q n-2 + ... + a 1 q 1 + a 0 q 0 + a -1 q -1 + ... + a - m q - m , где a i – цифры системы счисления; n и m – число целых и дробных разрядов, соответственно.

Например:

Кроме десятичной широко используются системы с основанием, являющимся целой степенью числа 2 , а именно :

    двоичная (используются цифры 0, 1);

    восьмеричная (используются цифры 0, 1, ..., 7);

    шестнадцатеричная (для первых целых чисел от нуля до девяти используются цифры 0, 1, ..., 9, а для следующих чисел - от десяти до пятнадцати – в качестве цифр используются символы A, B, C, D, E, F).

Полезно запомнить запись в этих системах счисления первых двух десятков целых чисел:

Из всех систем счисления особенно проста и поэтому интересна для технической реализации в компьютерах двоичная система счисления .

Перевод восьмеричных и шестнадцатеричных чисел в двоичную систему очень прост: достаточно каждую цифру заменить эквивалентной ей двоичной триадой (тройкой цифр) или тетрадой (четверкой цифр).

Например:


Чтобы перевести число из двоичной системы в восьмеричную или шестнадцатеричную , его нужно разбить влево и вправо от запятой на триады (для восьмеричной) или тетрады (для шестнадцатеричной) и каждую такую группу заменить соответствующей восьмеричной (шестнадцатеричной) цифрой.

Например,

При переводе целого десятичного числа в систему с основанием q его необходимо последовательно делить на q до тех пор, пока не останется остаток, меньший или равный q–1 . Число в системе с основанием q записывается как последовательность остатков от деления, записанных в обратном порядке, начиная с последнего.

Пример: Перевести число 75 из десятичной системы в двоичную, восьмеричную и шестнадцатеричную:

Ответ: 75 10 = 1 001 011 2 = 113 8 = 4B 16 .

При переводе числа из двоичной (восьмеричной, шестнадцатеричной) системы в десятичную надо это число представить в виде суммы степеней основания его системы счисления.

примеры:

Системы счисления

Система счисления – совокупность приемов и правил для записи чисел цифровыми знаками или символами.

Все системы счисления можно разделить на два класса: позиционные и непозиционные . В классе позиционных систем для записи чисел в различных системах счисления используется некоторое количество отличных друг от друга знаков. Число таких знаков в позиционной системе счисления называется основанием системы счисления. Ниже приведена таблица, содержащая наименования некоторых позиционных систем счисления и перечень знаков (цифр), из которых образуются в них числа.

Некоторые системы счисления

Основание Система счисления Знаки
Двоичная 0,1
Троичная 0, 1, 2
Четверичная 0, 1, 2, 3
Пятеричная 0, 1, 2, 3, 4
Восьмеричная 0, 1, 2, 3, 4, 5, 6, 7
Десятичная 0, 1, 2, 3, 4, 5, 6, 7, 8, 9
Двенадцатеричная 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B
Шестнадцатеричная 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F

В позиционной системе счисления относительной позиции цифры в числе ставится в соответствие весовой множитель, и число может быть представлено в виде суммы произведений коэффициентов на соответствующую степень основания системы счисления (весовой множитель):

A n А n–1 A n–2 ...A 1 A 0 , A –1 A –2 ... =

A n B n + A n-1 B n-1 + ... + A 1 B 1 + A 0 B 0 + A –1 B –1 + A –2 B –2 + ...

(знак «,» отделяет целую часть числа от дробной. Таким образом, значение каждого знака в числе зависит от позиции, которую занимает знак в записи числа. Именно поэтому такие системы счисления называют позиционными).

Позиционная система счисления – система, в которой величина числа определяется значениями входящих в него цифр и их относительным положением в числе.

23,45 10 = 2 ⋅ 10 1 + 3 ⋅ 10 0 + 4 ⋅ 10 –1 + 5 ⋅ 10 –2 .

Десятичный индекс внизу указывает основание системы счисления.

692 10 = 6 ⋅ 10 2 + 9 ⋅ 10 1 + 2 ⋅ 10 0 ;

1101 2 = 1 ⋅ 2 3 + 1 ⋅ 2 2 + 0 ⋅ 2 1 + 1 ⋅ 2 0 = 13 10 ;

112 3 = 1 ⋅ 3 2 + 1 ⋅ 3 1 + 2 ⋅ 3 0 = 14 10 ;

341,5 8 = 3 ⋅ 8 2 + 4 ⋅ 8 1 + 1 ⋅ 8 0 + 5 ⋅ 8 –1 = 225,125 10 ;

A1F,4 16 = А ⋅ 16 2 + 1 ⋅ 16 1 + F ⋅ 16 0 + 4 ⋅ 16 –1 = 2591,625 10 .

При работе с компьютерами приходится параллельно использовать несколько позиционных систем счисления (чаще всего двоичную, десятичную, восьмеричную и шестнадцатеричную), поэтому большое практическое значение имеют процедуры перевода чисел из одной системы счисления в другую. Заметим, что во всех приведенных выше примерах результат является десятичным числом, и, таким образом, способ перевода чисел из любой позиционной системы счисления в десятичную уже продемонстрирован.



В общем случае, чтобы перевести целую часть числа из десятичной системы в систему с основанием В, необходимо разделить ее на В. Остаток даст младший разряд числа. Полученное при этом частное необходимо вновь разделить на В – остаток даст следующий разряд числа и т.д. Деления продолжают до тех пор, пока частное не станет меньше основания. Значения получившихся остатков, взятые в обратной последовательности, образуют искомое двоичное число.

Пример перевода целой части: Перевести 25 10 в число двоичной системы.

25 / 2 = 12 с остатком 1,

12 / 2 = 6 с остатком 0,

6 /2 = 3 с остатком 0,

Целая и дробная части переводятся порознь. Для перевода дробной части ее необходимо умножить на В. Целая часть полученного произведения будет первым (после запятой, отделяющей целую часть от дробной) знаком. Дробную же часть произведения необходимо вновь умножить на В. Целая часть полученного числа будет следующим знаком и т.д.

Для перевода дробной части (или числа, у которого «0» целых) надо умножить ее на 2. Целая часть произведения будет первой цифрой числа в двоичной системе. Затем, отбрасывая у результата целую часть, вновь умножаем на 2 и т.д. Заметим, что конечная десятичная дробь при этом вполне может стать бесконечной (периодической) двоичной.

Пример перевода дробной части: Перевести 0,73 10 в число двоичной системы.

0,73 ⋅ 2 = 1,46 (целая часть 1),

0,46 ⋅ 2 = 0,92 (целая часть 0),

0,92 ⋅ 2 = 1,84 (целая часть 1),

0,84 ⋅ 2 = 1,68 (целая часть 1) и т.д.

Таким образом: 0,73 10 = 0,1011 2 .

Над числами, записанными в любой системе счисления, можно производить различные арифметические операции. Арифметические операции во всех позиционных системах счисления выполняются по одним и тем же хорошо известным вам правилам.



Рассмотрим сложение двух чисел с основание десять:

При сложении числа 6 и 7 результат можно представить, как выражение 10 + 3, где 10, является полным основанием для десятичной системы счисления. Заменим 10 (основание) на 1 и подставим слева от цифры 3. Получится:

6 10 + 7 10 = 13 10 .

Рассмотрим сложение двух чисел с основание восемь:

При сложении числа 6 и 7 результат можно представить, как выражение 8 + 5, где 8, является полным основанием для восьмеричной системы счисления. Заменим 8 (основание) на 1 и подставим слева от цифры 5. Получится:

6 8 + 7 8 = 15 8 .

Рассмотрим сложение двух больших чисел с основание восемь:

Сложение начинается с младшего разряда. Итак, 4 8 + 6 8 представляем, как 8 (основание) + 2. Заменяем 8 (основание) на 1 и добавляем эту единицу к цифрам старшего разряда. Далее складываем следующие разряды: 5 8 + 3 8 + 1 8 представляем, как 8 + 1, заменяем 8 (основание) на 1 и добавляем ее к старшему разряду. Далее, 2 8 + 7 8 + 1 8 представляем, как 8 (основание) + 2, заменяем 8 (основание) на 1 и подставляем слева от получившегося числа (в позицию старшего разряда). Таким образом, получается:

254 8 + 736 8 = 1212 8 .

276 8 + 231 8 = 527 8 ,

4A77 16 + BF4 16 = 566B 16 ,

1100110 2 + 1100111 2 = 11001101 2 .

Другие арифметические операции (вычитание, умножение и деление) в различных системах счисления выполняются аналогично.

Рассмотрим умножение «столбиком», на примере двух чисел двоичной системы:

11101 2 · 101 2

Записываем числа друг под другом, в соответствии с разрядами. Затем производим поразрядное перемножение второго множителя на первый и записываем со смещением влево, так же, как при умножении десятичных чисел. Остается сложить «смещенные» числа, учитывая основание чисел, в данном случае двоичное.

преобразуем получившийся результат к основанию 16.

Во втором разряде 29 представляем, как 16 (основание) и 13 (D). Заменим 16 (основание) на 1 и добавим к старшему разряду.

В третьем разряде 96 + 1 = 97. Затем 97 представим, как 6 · 16 (основание) и 1. Добавим 6 старшему разряду.

В четвертом разряде 20 + 6 = 26. Представим 26, как 16 (основание) и 10 (А). Единицу переносим в старший разряд.

При определенных навыках работы с различными системами счисления запись можно было сразу представить, как

A
B B
A D

Таким образом, A31 16 · 29 16 = 1A1D9 16 .

527 8 – 276 8 = 231 8 ,

566B 16 – 4A77 16 = BF4 16 ,

11001101 2 – 1100110 2 = 1100111 2 ,

276 8 · 231 8 = 70616 8 ,

4A77 16 · BF4 16 = 37A166C 16 ,

1100110 2 · 1100111 2 = 10100100001010 2 .

С точки зрения изучения принципов представления и обработки информации в компьютере, обсуждаемые системы (двоичная, восьмеричная и шестнадцатеричная) представляют большой интерес, хотя компьютер обрабатывает данные только преобразованные к двоичному коду (двоичная система счисления). Однако, часто с целью уменьшения количества записываемых на бумаге или вводимых с клавиатуры компьютера знаков бывает удобнее пользоваться восьмеричными или шестнадцатеричными числами, тем более что, как будет показано далее, процедура взаимного перевода чисел из каждой из этих систем в двоичную очень проста – гораздо проще переводов между любой из этих трех систем и десятичной.

Представим числа различных систем счисления соответственно друг другу:

Десятичная Шестнадцатеричная Восьмеричная Двоичная
A
B
C
D
E
F

Из таблицы видно, что числа системы с основанием 2, 8 и 16 имеют периодические закономерности. Так, восемь значений восьмеричной системы, то есть (от 0 до 7 или полное основание) соответствуют трем разрядам (триады ) двоичной системы. Таким образом, для описания чисел одного разряда восьмеричной системы требуется ровно три разряда двоичной. Аналогично и с числами шестнадцатеричной системы. Только для их описания требуется ровно четыре разряда (тетрады ) двоичной системы.

Отсюда следует, что для перевода любого целого двоичного числа в восьмеричное, необходимо разбить его справа налево на группы по 3 цифры (самая левая группа может содержать менее трех двоичных цифр), а затем каждой группе поставить в соответствие ее восьмеричный эквивалент.

Например, требуется перевести 11011001 2 в восьмеричную систему.

Разбиваем число на группы по три цифры 011 2 , 011 2 и 001 2 . Подставляем соответствующие цифры восьмеричной системы. Получаем 3 8 , 3 8 и 1 8 или 331 8 .

11011001 2 = 331 8 .

Аналогично осуществляются и обратные переводы, например:

Перевести AB5D 16 в двоичную систему счисления.

Поочередно заменяем каждый символ числа AB5D 16 на соответствующее число из двоичной системы. Получим 1010 16 , 1011 16 , 0101 16 и 1101 16 или 1010101101011101 2 .

AB5D 16 = 1010101101011101 2 .

Кроме рассмотренных выше позиционных систем счисления существуют такие, в которых значение знака не зависит от того места, которое он занимает в числе. Такие системы счисления называются непозиционными . Наиболее известным примером непозиционной системы являетсяримская . В этой системе используется 7 знаков (I, V, X, L, С, D, М), которые соответствуют следующим величинам:

Правила записи чисел римскими цифрами : – если большая цифра стоит перед меньшей, то они складываются (принцип сложения), – если меньшая цифра стоит перед большей, то меньшая вычитается из большей (принцип вычитания).

Второе правило применяется для того, чтобы избежать четырёхкратного повторения одной и той же цифры. Так, римские цифры I, Х, С ставятся соответственно перед Х, С, М для обозначения 9, 90, 900 или перед V, L, D для обозначения 4, 40, 400.

Примеры записи чисел римскими цифрами:

IV = 5 - 1 = 4 (вместо IIII),

XIX = 10 + 10 - 1 = 19 (вместо XVIIII),

XL = 50 - 10 =40 (вместо XXXX),

XXXIII = 10 + 10 + 10 + 1 + 1 + 1 = 33 и т.д.

Следует отметить, что выполнение даже простых арифметических действий над многозначными числами римскими цифрами весьма неудобно. Вероятно, сложность вычислений в римской системе, основанной на использовании латинских букв, стала одной из веских причин замены ее на более удобную в этом плане десятичную систему.

3.1 Основанием системы счисления называется...

Совокупность приемов и правил для записи чисел цифровыми знаками или символами

Число знаков использующиеся в определенной позиционной системе счисления

Делитель, использующийся при переводе чисел из одной системы счисления в другую

Общий множитель, при переводе чисел из одной системы счисления в другую

3.2 Какая система счисления не нашла широкого применения в компьютерной технике

Восьмеричная

Двоичная

Пятеричная

Шестнадцатеричная