Изображение 8 бит и 16. Основные сведения об изображениях. Обработка внутри камеры

Посетите практически любой форум по фотографии, и вы непременно наткнетесь на дискуссию относительно преимуществ RAW и JPEG файлов. Одна из причин, по которой некоторые фотографы предпочитают формат RAW - это бóльшая глубина бита (глубина цвета)*, содержащаяся в файле. Это позволяет вам получать фотографии большего технического качества, чем те, что вы можете получить из файла JPEG.

*Bit depth (глубина бита), или Color depth (глубина цвета, в русском языке чаще используется именно это определение) - количество бит, используемых для представления цвета при кодировании одного пикселя растровой графики или видеоизображения. Часто выражается единицей бит на пиксель (англ. bits per pixel, bpp). Wikipedia

Что такое глубина цвета?

Компьютеры (и устройства, которые управляются встроенными компьютерами, такие как цифровые SLR-камеры) используют двоичную систему исчисления. Двоичная нумерация состоит из двух цифр - 1 и 0 (в отличие от десятичной системы исчисления, включающей 10 цифр). Одна цифра в двоичной системе исчисления называется «бит» (англ. «bit», сокращенно от «binary digit», «двоичная цифра»).

Восьмибитное число в двоичной системе выглядит так: 10110001 (эквивалентно 177 в десятичной системе). Таблица ниже демонстрирует, как это работает.

Максимально возможное восьмибитное число - это 11111111 - или 255 в десятичном варианте. Это значимая цифра для фотографов, поскольку она возникает во многих программах для обработки изображений, а также в старых дисплеях.

Цифровая съемка

Каждый из миллионов пикселей на цифровой фотографии соответствует элементу (также называемому «пиксель», англ. «pixel») на сенсоре (сенсорная матрица) камеры. Эти элементы при попадании на них света генерируют слабый электрический ток, измеряемый камерой и записывающийся в JPEG или RAW файл.

Файлы JPEG

Файлы JPEG записывают информацию о цвете и яркости для каждого пикселя тремя восьмиразрядными числами, по одному числу для красного, зеленого и синего каналов (эти цветовые каналы такие же, как те, что вы видите при построении цветовой гистограммы в Photoshop или на вашей камере).

Каждый восьмибитный канал записывает цвет по шкале 0-255, предоставляя теоретический максимум в 16,777,216 оттенках (256 x 256 x 256). Человеческий глаз может различать приблизительно около 10-12 миллионов цветов, так что это число обеспечивает более чем удовлетворительное количество информации для отображения любого объекта.

Этот градиент был сохранен в 24-битном файле (по 8 бит на каждый канал), что достаточно для передачи мягкой градации цветов.

Этот градиент был сохранен как 16-битный файл. Как вы можете видеть, 16 бит недостаточно для передачи мягкого градиента.

RAW файлы

RAW файлы присваивают больше бит каждому пикселю (большинство камер имеют 12 или 14-битные процессоры). Больше бит - больше числа, а, следовательно, больше тонов на каждый канал.

Это не приравнивается к большему количеству цветов - JPEG файлы уже могут записывать больше цветов, чем может воспринять человеческий глаз. Но каждый цвет сохраняется с гораздо более тонкой градацией тонов. В таком случае говорят, что изображение имеет большую глубину цвета. Таблица ниже иллюстрирует, как глубина бита приравнивается к количеству оттенков.

Обработка внутри камеры

Когда вы настраиваете камеру на запись фотографий в режиме JPEG, внутренний процессор камеры считывает информацию, полученную от сенсора в момент, когда вы делаете снимок, обрабатывает ее в соответствии с параметрами, выставленными в меню камеры (баланс белого, контраст, насыщенность цвета и т.д.), и записывает ее как 8-битный JPEG файл. Вся дополнительная информация, полученная сенсором, отбрасывается и теряется навсегда. В итоге, вы используете лишь 8 бит из 12 или 14 возможных, которые сенсор способен зафиксировать.

Постобработка

RAW файл отличается от JPEG тем, что содержит все данные, зафиксированные сенсором камеры за период экспонирования. Когда вы обрабатываете RAW файл, используя программное обеспечение для конвертации RAW, программа осуществляет преобразования, аналогичные тем, что производит внутренний процессор камеры, когда вы снимаете в JPEG. Различие состоит в том, что вы выставляете параметры внутри используемой программы, а те, что выставлены в меню камеры, игнорируются.

Выгода от дополнительной глубины бита RAW файла становится очевидной при постобработке. JPEG файл стоит использовать, если вы не собираетесь делать какую-либо постобработку и вам достаточно выставить экспозицию и все другие настройки во время съемки.

Однако, в реальности большинство из нас хочет внести хотя бы несколько исправлений, если это даже просто яркость и контраст. И это именно тот момент, когда JPEG файлы начинают уступать. С меньшим количеством информации на пиксель, когда вы проводите корректировку яркости, контраста или цветового баланса, оттенки могут визуально разделиться.

Результат наиболее очевиден в областях плавного и продолжительного перехода оттенков, таких как на голубом небе. Вместо мягкого градиента от светлого к темному, вы увидите расслоение на цветовые полосы. Этот эффект также известен как постеризация (англ. «posterisation»). Чем больше вы корректируете, тем сильнее он проявляется на изображении.

С файлом RAW, вы можете вносить гораздо более сильные изменения в оттенок цвета, яркость и контраст до того, как вы увидите снижение качества изображения. Это также позволяют сделать некоторые функции RAW-конвертера, такие как настройка баланса белого и восстановление «пересвеченных» областей (highlight recovery).

Это фото получено из JPEG файла. Даже при таком размере видны полосы в небе как результат постобработки.

При тщательном рассмотрении на небе виден эффект постеризации. Работа с 16-битным TIFF файлом может ликвидировать, или по крайней мере минимизировать, эффект полос.

16-битные TIFFфайлы

Когда вы обрабатываете RAW файл, ваше программное обеспечение предоставляет вам опцию по сохранению его как 8 или 16-битного файла. Если вы довольны обработкой и не хотите вносить еще какие-либо изменения, вы можете сохранить его как 8-битный файл. Вы не заметите никаких различий между файлом 8 бит и 16 бит на вашем мониторе или когда вы распечатаете изображение. Исключение - тот случай, когда у вас есть принтер, распознающий 16-битные файлы. В этом случае, из файла 16 бит вы можете получить лучший результат.

Однако если вы планируете осуществлять постобработку в Photoshop, тогда рекомендуется сохранять изображение как 16-битный файл. В этом случае изображение, полученное из 12 или 14-битного сенсора, будет «растянуто», чтобы заполнить 16-битный файл. После этого вы можете поработать над ним в Photoshop, зная, что дополнительная глубина цвета поможет вам достичь максимального качества.

Опять же, когда вы завершили процесс обработки, вы можете сохранить файл как 8-битный файл. Журналы, издатели книг и стоки (и практически любой клиент, покупающий фотографии), требуют 8-битные изображения. Файлы 16 бит могут потребоваться, только если вы (или кто-то другой) намереваетесь редактировать файл.

Это изображение, которое я получил, используя настройку RAW+JPEG на камере EOS 350D. Камера сохранила две версии файла - JPEG, обработанный процессором камеры, и RAW файл, содержащий всю информацию, записанную 12-битным сенсором камеры.

Здесь вы видите сравнение правого верхнего угла обработанного JPEG файла и RAW файла. Оба файла были созданы камерой с одной и той же настройкой экспозиции, и единственное различие между ними - это глубина цвета. Я смог «вытянуть» не различимые в JPEG «пересвеченные» детали в RAW файле. Если бы я хотел поработать над этим изображением дальше в Photoshop, я мог бы сохранить его как 16-битный файл TIFF, чтобы обеспечить максимально возможное качество изображения в течение процесса обработки.

Почему фотографы используют JPEG?

То, что не все профессиональные фотографы используют формат RAW все время, еще ничего не значит. Как свадебные, так и спортивные фотографы, например, зачастую работают именно с форматом JPEG.

Для свадебных фотографов, которые могут снять тысячи снимков на свадьбе, это экономит время на последующей обработке.

Спортивные фотографы используют JPEG файлы для того, чтобы иметь возможность отсылать фотографии своим графическим редакторам в течение мероприятия. В обоих случаях скорость, эффективность и меньший размер файлов формата JPEG делает использование этого типа файлов логичным.

Глубина цвета на компьютерных экранах

Глубина бита также относится к глубине цвета, которую компьютерные мониторы способны отображать. Читателю, использующему современные дисплеи, возможно, тяжело будет в это поверить, но компьютеры, которыми я пользовался в школе, могли воспроизводить только 2 цвета - белый и черный. «Must-have» компьютер того времени - Commodore 64, способный воспроизводить аж 16 цветов. В соответствии с информацией из «Википедии», было продано более 12 единиц этого компьютера.


Компьютер Commodore 64. Автор фотографии Билл Бертрам (Bill Bertram)

Несомненно, вы не сможете редактировать фотографии на машине с 16 цветами (64 Кб оперативной памяти в любом случае больше не потянут), и изобретение 24-битных дисплеев с реалистичным цветовоспроизведением - одна из вещей, которые сделали цифровую фотографию возможной. Дисплеи с реалистичным цветовоспроизведением, как и файлы JPEG, формируются при помощи трех цветов (красного, зеленого и синего), каждый с 256 оттенками, записанными в 8-битную цифру. Большинство современных мониторов используют либо 24-битные, либо 32-битные графические устройства с реалистичным цветовоспроизведением.

Файлы HDR

Многие из вас знают, что изображения с расширенным динамическим диапазоном (HDR) создаются путем комбинирования нескольких версий одного и того же изображения, снятого с разными настройками экспозиции. Но знаете ли вы, что программное обеспечение формирует 32-битное изображение с более чем 4 миллиардами тональных значений на каждый канал на пиксель - просто скачок по сравнению с 256 оттенками в файле JPEG.

Настоящие HDR файлы не могут быть корректно отображены на компьютерном мониторе или распечатанной странице. Вместо этого они урезаются до 8 или 16-битных файлов при помощи процесса, называемого тональная компрессия (англ. «tone-mapping»), который сохраняет характеристики оригинального изображения с расширенным динамическим диапазоном, но позволяет воспроизвести его на устройствах с узким динамическим диапазоном.

Заключение

Пиксели и биты - основные элементы для построения цифрового изображения. Если вы хотите получить максимально хорошее качество снимка на вашей камере, необходимо понимать концепцию глубины цвета и причины, по которым формат RAW позволяет получить изображение лучшего качества.

Битность изображения частый ворпрос. Рассказываем какой вариант предпочесть и почему больше бит — это не всегда хорошо.

Стандартное мнение на этот счет — чем больше битов, тем лучше. Но действительно ли мы понимаем разницу между 8-битными и 16-битными изображениями? Фотограф Натаниэл Додсон детально объясняет различия в этом 12-минутном видео:

Большее число битов, поясняет Додсон, означает, что у вас есть больше свободы при работе с цветами и тонами до появления различных артефактов на изображении, таких как бандинг (“полосатость”).

Если вы снимаете в JPEG, то ограничиваете себя битовой глубиной в 8 бит, которая позволяет работать с 256 уровнями цвета на каждый канал. Формат RAW может быть 12-, 14- или 16-битным, при этом последний вариант дает 65 536 уровней цветов и тонов — то есть гораздо больше свободы при постобработке изображения. Если считать в цветах, то надо перемножить уровни всех трех каналов. 256х256х256 ≈ 16,8 миллиона цветов для 8-битного изображения и 65 536х65 536х65 536 ≈ 28 миллиардов цветов для 16-битного.

Чтобы наглядно представить разницу между 8-битным и 16-битным изображением, представьте себе первое как здание высотой 256 футов — это 78 метров. Высота второго “здания” (16-битного фото) будет 19,3 километра — это 24 башни Бурдж Халифа, поставленных одна на другую.

Обратите внимание, что нельзя просто открыть 8-битное изображение в Photoshop и “превратить” его в 16-битное. Создавая 16-битный файл, вы даете ему достаточно “пространства”, чтобы хранить 16 битов информации. Конвертируя 8-битное изображение в 16-битное, вы получите 8 битов неиспользованного “пространства”.


JPEG: нет деталей, плохой цвет, RAW: деталей не много

Но дополнительная глубина означает больший размер файла — то есть изображение будет обрабатываться дольше, а также потребует больше места для хранения.

В конечном счете, все зависит от того, какую степень свободы вы хотите иметь при постобработке снимков, а также от возможностей вашего компьютера.

Глубина цвета

Глубина цвета (качество цветопередачи, битность изображения) – термин компьютерной графики, означающий объем памяти в количестве бит, используемых для хранения и представления цвета при кодировании одного пикселя растровой графики или видеоизображения. Часто выражается единицей бит на пиксель (англ. bpp – bits per pixel).

  • 8-битное изображение. При большом количестве бит в представлении цвета количество отображаемых цветов слишком велико для цветовых палитр. Поэтому при большой глубине цвета кодируются яркости красной, зеленой и синей составляющих – такое кодирование является RGB- моделью.
  • 8-битный цвет в компьютерной графике – метод хранения графической информации в оперативной памяти либо в файле изображения, когда каждый пиксель кодируется одним байтом (8 бит). Максимальное количество цветов, которые могут быть отображены одновременно, – 256 (28).

Форматы 8-битного цвета

Индексированный цвет. В индексированном (палитровом ) режиме из широкого цветового пространства выбираются любые 256 цветов. Их значения R, G и В хранятся в специальной таблице – палитре. В каждом из пикселей изображения хранится помер цвета в палитре – от 0 до 255. 8-битные графические форматы эффективно сжимают изображения, в которых до 256 различных цветов. Уменьшение количества цветов – один из методов сжатия с потерями.

Преимущество индексированных цветов состоит в высоком качестве изображения – широкий цветовой охват сочетается с небольшим расходом памяти.

Черно-белая палитра. 8-битное черно-белое изображение – от черного (0) до белого (255) – 256 градаций серого.

Однородные палитры. Другой формат представления 8-битных цветов – описание красной, зеленой и синей составляющей с низкой разрядностью. Такая форма представления цвета в компьютерной графике обычно называется 8-битным TrueColor или однородной палитрой (англ. uniform palette).

12-битный цвет цвет кодируется 4 битами (по 16 возможных значений) для каждой R-, G- и B -составляющих, что позволяет представить 4096 (16 х 16 х 16) различных цветов. Такая глубина цвета иногда используется в простых устройствах с цветными дисплеями (например, в мобильных телефонах).

HighColor, или HiColor, разработан для представления всего множества оттенков, воспринимаемых человеческим глазом. Такой цвет кодируется 15 или 16 битами, а именно: 15-битный цвет использует 5 бит для представления красной составляющей, 5 – для зеленой и 5 – для синей, т.е. 25 – 32 возможных значения каждого цвета, которые дают 32 768 (32 × 32 × 32) объединенных цвета. 16-битный цвет использует 5 бит для представления красной составляющей, 5 – для синей и (так как человеческий глаз более чувствителен при восприятии зеленых тонов) 6 бит для представления зеленой – соответственно 64 возможных значения. Всего 65 536 (32 × 64 × 32) цветов.

LCD Displays. Большинство современных LCD-дисплеев отображают 18-битный цвет (64 χ 64 χ 64 = 262 144 комбинаций). Разница с truecolor- дисплеями компенсируется мерцанием цвета пикселей между их ближайшими цветами в 6-битной разрядности и (или) незаметным глазу дизерингом (англ. dithering ), при котором отсутствующие цвета составляются из имеющихся путем их перемешивания.

Truecolor 24-битное изображение. Truecolor предоставляет 16,7 млн различных цветов. Такой цвет наиболее близок человеческому восприятию и удобен для обработки изображений. 24-битный truecolor -цвет использует по 8 бит для представления красной, синей и зеленой составляющих, 256 различных вариантов представления цвета для каждого канала, или всего 16 777 216 цветов (256 × 256 × 256).

32-битный цвет – неправильное описание глубины цвета. 32-битный цвет является 24-битным (Truecolor ) с дополнительным 8-битным каналом, который определяет прозрачность изображения для каждого пикселя.

Свсрх-Truecolor. В конце 1990-х гг. некоторые графические системы высшего класса начали использовать более 8 бит на канал, например 12 или 16 бит.

8-битное изображение, 16-битное изображение… Сканер с глубиной цвета 48 бит… Любой человек интуитивно понимает – чем больше глубина цвета, тем что-то там лучше Но что именно? И вообще – есть ли практическая польза в этих цифрах для простого отолюбителя?

Сначала – несколько основных понятий.

Бит – это самая маленькая порция информации. Он может обозначать

    0 или 1,
    черное или белое,
    Вкл или Выкл.
8 бит составляют байт . Один байт (8 бит) может представлять 256 различных значений чего-либо.

Большая часть сегодняшних цифровых устройств работает с 8-битными изображениями. Это ваш струйный фотопринтер и, вполне возможно, даже ваш монитор. То есть почти все картинки, которые вы видите, являются 8-битными.

Небольшой оффтопик

Если печатать черно-белое фото на струйнике, используя только один черный картридж, качество будет хуже, чем если печатать с использованием всех картриджей (четырех, шести или восьми – сколько там у вас есть?).

Почему с одним черным картриджем хуже? Ведь изображение черно-белое?

Потому что принтер сможет воспроизвести всего лишь 256 градаций яркости – от белого до самого черного. Для картинок с большим количеством полутонов и плавными переходами яркости этого бывает недостаточно. Картинка выглядит грубовато.

Если же использовать еще и цветные картриджи, то смешивание трех основных цветов (пурпурного, голубого и желтого) может дать миллионы оттенков серого (256х256х256). Почувствуйте разницу

(На самом деле все несколько сложнее, но суть остается – 8 бит для отображения даже черно-белой картинки маловато).

Сколько на самом деле - 8 бит или 24?

Любое цифровое изображение всегда состоит из 3-х основных цветов :

    красного, зеленого и синего
    голубого, пурпурного и желтого
в зависимости от того, видите вы его на экране или на бумаге.

Для хранения информации о каждом из 3-х цветов используется 8 бит. Так что если быть совершенно точным, то правильнее называть такие изображения не 8-битными, а 24-битными (8х3).

Поэтому 8-битное изображение и 24-битное – это вообще-то синонимы.

8 (24) и 16 (48) бит – две ОГРОМНЫЕ разницы

Вместо использования всего лишь 8 бит для представления одного цвета, более продвинутые устройства иногда могут использовать 12 или даже 16 бит .

16-битное изображение может хранить 65,536 дискретных уровней информации для каждого цвета, вместо 256 уровней, на которые способны 8-битные изображения. Можете представить, насколько больше нюансов может передать 16-битное изображение. Если картинка очень сложная и нежная, с большим количеством полутоновых переходов, то такое различие может поистине разительным.

И точно так же как цветные 8-битные 24-битными , так и цветные 16-битные изображения на самом деле являются 48-битными (16x3), если помнить, что они состоят из трех цветов.

Теоретически, 48-битное изображение может передать просто сумасшедшее количество цветовых оттенков. 281474976710656 , если быть точным. Не хило…

На что способны сегодняшние микросхемы

Все микросхемы обработки изображений в сканерах и цифровых фотоаппаратах способны порождать 24-битные (8х3) изображения.
Некоторые могут генерировать 36-битные (12x3) фотографии, а некоторые топовые модели сканеров и фотоаппаратов могут давать полноценные 48-битные (16x3) картинки.

В большой глубине цвета есть свои плюсы и свои минусы.

Сколько издевательств может выдержать картинка?

Часто на мониторе вы не сможете на глаз отличить 8-битную картинку от 16-битной.
Но!

Главный момент, когда разница между 8-ю и 16-ю битами начинает проявляться (причем разительно) – это при любой операции по редактированию изображения. Например, применение дежурной операции Levels или Curves в фотошопе для 8-битного изображения может давать гораздо более грубые результаты, чем для 16-битного.

Любая операция по редактирования изображения приводит к необратимой потере информации (иногда – едва заметной, иногда – сильно заметной). Рано или поздно эта деградация начинает быть видимой глазом. У 16-битного изображения гораздо больший «запас прочности», чем у 8-битного.

Настолько больший, насколько 65536 больше, чем 256.

Когда информация о цветах картинки сжимается или растягивается при использовании операций Levels или Curves , данные 8-битного файла быстро превращаются в решето, а гистограмма – в беззубую расческу (как видно на иллюстрации ниже ). Все это ведет к постеризации . Постеризация проявляет себя в виде грубых ступенчатых переходов цвета и яркости.

Фотография, приведенная выше, хорошо иллюстрирует этот эффект. Диапазон яркостей на этой фотографии просто огромен – от почти выжженных ослепительно-белых облаков до глубоких теней на земле.

Вдобавок сюжет каждую секунду менялся – дирижаблю то взлетал, то опускался, ветер поворачивал его в разные стороны, люди бегали, солнце светило то в лицо, то пряталось за дирижаблем. Естественно, сделать идеальный снимок было очень трудно, и его пришлось потом «доводить» в фотошопе.

Поскольку я обрабатывал 16-битное изображение, финальная гистограмма выглядела более-менее удовлетворительно:

Конечно, видны прорехи – безвозвратно потерянная во время обработки информация, но в целом все живо. И только в самом конце, после завершения обработки, я преобразовал изображение в 8-битный вид для печати и размещения в Интернете.

Я попробовал проделать те же операции над 8-битным вариантом изображения. Сравните гистограммы:

Даже если вы не понимаете, что такое , все равно понятно, что в «дырявой» гистограмме информации меньше, а соответствующая ей картинка выглядит хуже.

Похоже, больше половины информации в 8-битном изображении утрачено в процессе редактирования. А визуально – на картинке появились ступенчатые переходы в области неба – там, где должны быть плавные тональные переходы.

Как получить16-битное изображение?

16-битное изображение от фотоаппарата можно получить только если вы снимаете в формате RAW .

RAW-файл вы пропускаете через специальную программу-конвертер (поставляемую в комплекте с фотоаппаратом, такую как DPP или Nikon Capture , или от независимого разработчика, такую как Capture One или Raw Shooter ; кстати, фотошоп тоже умеет это делать). Программа-конвертер делает из RAW-файла 16-битный файл в формате TIFF, который вы можете обрабатывать в фотошопе.

Как быть тем, у кого камера не имеет режима съемки в RAW?

Отчасти помочь может преобразование 8-битного изображения в 16-битный режим в фотошопе (Image>Mode>16 Bit/Channel). Это самое первое, что следует сделать, открыв фото в фотошопе. Конечно, такая операция не сделает вашу фотографию по-настоящему 16-битной. Но все-таки файл станет более эластичным и устойчивым к потере информации при обработке.

Какие минусы есть у 16-битного изображения?

Во-первых, как уже было сказано, получить 16-битное изображение можно только из RAW-файла . (Ну, еще можно сделать 16-битный эрзац в фотошопе, как было сказано чуть выше). В любом случае – это дополнительный геморрой. Кстати, RAW-файл вы, скорее всего, не можете просмотреть никакой утилитой Windows. При хранении и сортировке фотографий на компьютере это добавляет дополнительное неудобство.

Во-вторых, 16-битные файлы имеют вдвое больший размер , чем 8-битные. Это значит, что они занимают больше места на диске. Ну, и RAW-файл тоже «весит» прилично, поэтому на карточку памяти в фотоаппарате поместится в несколько раз меньше снимков.

В-третьих, некоторые функции или фильтры фотошопа не работают в 16-битном режиме (чем более ранняя версия фотошопа, тем больше функций не работает). Поэтому если у вас есть какой-то привычный порядок операций при работе в фотошопе, его придется изменить. Часть операций надо будет делать в 16-битном режиме, а оставшуюся часть (которая недоступна в 16-битном режиме) – в 8-битном режиме.

В-четвертых, при обработке 16-битных файлов фотошоп может тормозить (иногда – о-очень сильно тормозить). Это раздражает. Не менее раздражает то, что в 16-битном режиме часто не хватает места на рабочем диске, где фотошоп держит свой кэш. Приходится прерывать работу и срочно что-нибудь удалять с этого диска, чтобы фотошоп мог продолжить работу.

Это не бог весть какие критические трудности, но имейте их в виду и не жалуйтесь, что я вас не предупреждал

Практические выводы

Максимально качественную картинку можно подготовить только из 16-битного файла. Это не означает, что из любого 16-битного файла можно сделать шедевр. Это всего лишь означает, что 8-битное изображение будет выглядеть еще хуже. Или гораздо хуже.

Снимайте не просто в режиме RAW, а в режиме RAW+JPEG. Тогда у вас к каждому файлу в дурацком формате RAW будет JPEG-дубль. Вам будет гораздо проще ориентироваться в файлах - просматривать, сортировать, удалять, дарить. Правда, за это вы заплатите лишним пространством на карточке памяти.

Если вы не собираетесь особо обрабатывать серию фотографий, смело можете использовать 8-битный режим (и снимать их не в формате RAW, а в JPEG).

Кроме этого последнего случая, всегда желательно снимать в режиме RAW и обрабатывать в 16-битном режиме.

Одним из важнейших параметров цифрового изображения при фотообработке является глубина цвета (Color Depth), или битность цвета. Возможно, Вы уже встречались с этим параметром, однако далеко не все придают ему должное значение. Давайте же разберемся что это такое, зачем оно надо и как с этим жить.

Теория

Начнем как всегда с небольшого теоретического вступления, потому что хорошая теория дает понимание процессов, происходящих на практике. А понимание — залог качественного и контролируемого результата.

Итак, мы имеем дело с компьютером, а в компьютерах, как известно все пути ведут к двоичному коду, или нулям и единицам. А вот сколько мы можем использовать нулей и единиц для определения цвета нам и говорит битность цвета. Для большей наглядности разберем на примере.

Ниже вы можете увидеть однобитное изображение. Цвета в нем определяются только одной цифрой, которая может принимать значение 0 или 1, что означает черный и белый соответственно.

Глубина цвета — 1 бит

Теперь переходим на ступень выше, к 2-битным изображениям. Тут уже цвет определяется сразу 2 цифрами, и вот все возможные их комбинации: 00, 01, 10, 11. Значит при 2-битном цвете мы имеем уже целых 4 возможных цвета.

Глубина цвета — 2 бита

Аналогично количество возможных цветов увеличивается с каждым шагом, и в 8-битном изображении уже равняется 256 цветам. На первый взгляд вроде бы нормально, тем более что 256 цветов — это только на один канал, а у нас их 3. В результате это дает 16,7 миллионов цветов. Но дальше вы убедитесь что для серьезной обработки этого совсем не достаточно.

16 битный цвет (а по факту в Фотошопе это 15 бит + 1 цвет) дает нам 32769 цветов на канал или 35 триллионов цветов суммарно. Чувствуете разницу? Для человеческого глаза это совершенно не заметно… До тех пор пока мы не накидаем на наше изображение кучу фильтров.

Что же будет?

Возьмем в качестве исходного примера черно-белый градиент.
Чтобы быстро и просто сымитировать результат тяжелой обработки, добавим 2 слоя Levels со следующими параметрами:

Слои Levels

И вот такой результат мы получим при разной глубине цвета исходного изображения:

Градиент после наложения фильтров

Как видите верхний 8-битный градиент стал явно полосатым, в то время как 16-битный сохранил плавный переход (если у вас не очень качественный монитор, возможно небольшая полосатость будет наблюдаться и на нижнем градиенте). Подобный эффект потери плавных цветовых переходов называется постеризацией.

На реальных фотографиях постеризация может проявляться также на различных градиентах, в частности — на небе. Вот пример постеризации на реальном изображении, для лучшей видимости вырезана область где эффект наиболее заметен.

Постеризация на фотографии

Что же делать?

Всегда следите за тем, чтобы ваши исходные изображения для обработки были 16-битными. Но учтите, перевод изображения из 8 бит в 16 никакого полезного эффекта не даст, так как дополнительная цветовая информация в таком изображении изначально отсутствует.
Как настроить конвертацию фото из формата RAW в 16-битное изображение в приложениях Adobe Camera Raw, Adobe Photoshop Lightroom и DxO Optics Pro смотрите на видео ниже.