Параллельные вычисления: кластеры. Компания мехатроника


кафедра 29 "Управляющие Интеллектуальные Системы"

Реферат на тему:

Кластерные системы

Выполнил:

студент группы К9-292

Попов И.А

МОСКВА 2001

1. Введение

2. Основные классы современных параллельных компьютеров

3. Кластерная архитектура параллельных компьютеров

4. Цели создания кластерных систем

5. Отказоустойчивые кластеры

6. Высокопроизводительные кластеры

7. Проект Beowulf

8. Заключение

9. Литература

Введение

Развитие многопроцессорных вычислительных систем

Развитие традиционных архитектур построения вычислительных систем, таких как SMP, MPP, векторных параллельных систем идет достаточно быстрыми темпами. Повышается производительность, растет надежность и отказоустойчивость. Однако у этих архитектур есть один недостаток - стоимость создаваемых систем, подчас недоступная для многих пользователей таких систем - образовательных и научно-исследовательских организаций. Она оказывает очень высокой из-за усложнения аппаратных и программных составляющих системы, которые требуются для обеспечения таких темпов роста производиельности. Однако потребность в вычислительных ресурсах в настоящее время очень высока во многих сферах научной и практической деятельности и для ее обеспечения не хватает ресурсов традиционных суперкомпьютерных систем.

Кластерные системы возникли как более дешевое решение проблемы недостатка вычислительных ресурсов, и основываются на использовании в своей архитектуре широко распространенных и относительно дешевых технологий, аппаратных и программных средств, таких как PC, Ethernet, Linux и т.д. Использование массовых технологии в кластерных системах стало возможным благодаря значительному прогрессу в развитии компонентов обычных вычислительных систем, таких как центральные процессоры, операционные системы, коммуникационные среды.

Так как кластерные системы архитектурно являются развитием систем с массовым параллелизмом MPP, то главную роль в их развитии является прогресс в области сетевых технологий. К настоящему времени появились недорогие, но эффективные коммуникационные решения. Это и предопределило быстрое появление и развитие кластерных вычислительных систем. Также прогрессу развития кластерных систем способствовали и другие факторы.

Производительность персональных компьютеров на базе процессоров Intel в последние годы также значительно выросла. Такие компьютеры стали создавать серьезную конкуренцию рабочим станциям на базе более дорогих и мощных RISC процессоров. Одновременно стала приобретать все большую популярность ОС Linux - бесплатно распространяемая версия UNIX. При этом в научных организациях и университетах, где и разрабатывается большинство кластерных систем, как правило, имеются специалисты по ОС Linux.

Высокую степень развития кластерных систем на сегоднящний день показывает тот факт, что в списке самых мощных суперкомпьютеров мира Top500 – числится 11 кластерных установок.


Основные классы современных параллельных компьютеров

Кластерные системы являются развитием параллельных систем. Чтобы проказать место кластерных систем среди остальных типов параллельных архитектур вычислительных систем нужно привести их классификацию. Параллельные системы могут быть класифицированы по различным критериям.

С аппаратной точки зрения, основным параметром классификации паралелльных компьютеров является наличие общей (SMP) или распределенной памяти (MPP). Нечто среднее между SMP и MPP представляют собой NUMA-архитектуры, где память физически распределена, но логически общедоступна.

Симметричные мультипроцессорные системы

SMP система состоит из нескольких однородных процессоров и массива общей памяти. Один из часто используемых в SMP архитектурах подходов для формирования масштабируемой, общедоступной системы памяти, состоит в однородной организации доступа к памяти посредством организации масштабируемого канала память-процессоры:

Каждая операция доступа к памяти интерпретируется как транзакция по шине процессоры-память. Когерентность кэшей поддерживается аппаратными средствами.

В SMP каждый процессор имеет по крайней мере одну собственную кэш-память (а возможно, и несколько).

Можно сказать, что SMP система - это один компьютер с несколькими равноправными процессорами. Все остальное - в одном экземпляре: одна память, одна подсистема ввода/вывода, одна операционная система. Слово "равноправный" означает, что каждый процессор может делать все, что любой другой. Каждый процессор имеет доступ ко всей памяти, может выполнять любую операцию ввода/вывода, прерывать другие процессоры и т.д.

Недостатком данной архитектуры является необходимость организации канала процессоры-память с очень высокой пропускной способностью.

Массивно-параллельные системы

Массивно-параллельная система MPP состоит из однородных вычислительных узлов, включающих в себя:

  • один или несколько центральных процессоров (обычно RISC)
  • локальную память (прямой доступ к памяти других узлов невозможен)
  • коммуникационный процессор или сетевой адаптер
  • жесткие диски и/или другие устройства В/В

К системе могут быть добавлены специальные узлы ввода-вывода и управляющие узлы. Узлы связаны через некоторую коммуникационную среду (высокоскоростная сеть, коммутатор и т.п.)

Системы с неоднородным доступом к памяти NUMA

NUMA (nonuniform memory access) в отличие от привычной SMP архитектуры с разделяемой памятью представляет собой несколько отдельных процессоров, каждый из которых, кроме собственного кэша, обладает также локальной памятью:

В подобной архитектуре процессор и модули памяти тесно интегрированы, следовательно, скорость доступа к локальной памяти гораздо выше, чем к памяти “соседнего” процессора. Подсистемы ввода-вывода могут быть частью каждого узла или консолидированы на выделенных узлах ввода-вывода. Если во всей системе поддерживается когерентность кэшей, то такую архитектуру называют cc-NUMA.

Проще всего охарактеризовать NUMA-систему, представив себе большую систему SMP, разделенную на несколько частей, эти части связаны коммуникационной магистралью, подключенной к системным шинам, и каждая часть включает собственную основную память и подсистему ввода/вывода. Это и есть NUMA: большая SMP, разбитая на набор более мелких и простых SMP. Основной проблемой NUMA является обеспечение когерентности кэшей. Аппаратура позволяет работать со всеми отдельными устройствами основной памяти составных частей системы (называемых обычно узлами) как с единой гигантской памятью.

Кластерная архитектура

Рассмотрим место кластерной архитектуры вычислительных систем в данной классификации.

Кластер - это связанный набор полноценных компьютеров, используемый в качестве единого ресурса. Под понятием "полноценный компьютер" понимается завершенная компьютерная система, обладающая всем, что требуется для ее функционирования, включая процессоры, память, подсистему ввода/вывода, а также операционную систему, подсистемы, приложения и т.д. Обычно для этого годятся персональные компьютеры или параллельные системы, которые могут обладать архитектурой SMP и даже NUMA. Кластеры являются слабосвязанными системами, связи узлов используется одна из стандартных сетевых технологий (Fast/Gigabit Ethernet, Myrinet) на базе шинной архитектуры или коммутатора. Поэтому они являются более дешевой в построении модификацией MPP архитектуры.

Кластерная архитектура параллельных компьютеров

Общие принципы

Как уже было сказано раньше вычислительный кластер - это совокупность компьютеров, объединенных в рамках некоторой сети для решения одной задачи (рис.3), которая для пользователя представляется в качестве единого ресурса. Такую концепцию кластера впервые предложила и реализовала в начале 80-х корпорация Digital Equipment, которая и по сей день развивает эту технологию

Понятие "единый ресурс" означает наличие программного обеспечения, дающего возможность пользователям, администраторам и прикладным программам считать, что имеется только одна сущность, с которой они работают - кластер. Например, система пакетной обработки кластера позволяет послать задание на обработку кластеру, а не какому-нибудь отдельному компьютеру. Более сложным примером являются системы баз данных. Практически у всех производителей систем баз данных имеются версии, работающие в параллельном режиме на нескольких машинах кластера. В результате приложения, использующие базу данных, не должны заботиться о том, где выполняется их работа. СУБД отвечает за синхронизацию параллельно выполняемых действий и поддержание целостности базы данных.

Компьютеры, образующие кластер, - так называемые узлы кластера - всегда относительно независимы, что допускает остановку или выключение любого из них для проведения профилактических работ или установки дополнительного оборудования без нарушения работоспособности всего кластера.

В качестве вычислительных узлов в кластере обычно используются однопроцессорные персональные компьютеры, двух- или четырехпроцессорные SMP-серверы. Каждый узел работает под управлением своей копии операционной системы, в качестве которой чаще всего используются стандартные операционные системы: Linux, NT, Solaris и т.п. Состав и мощность узлов может меняться даже в рамках одного кластера, давая возможность создавать неоднородные системы. Выбор конкретной коммуникационной среды определяется многими факторами: особенностями класса решаемых задач, необходимостью последующего расширения кластера и т.п. Возможно включение в конфигурацию специализированных компьютеров, например, файл-сервера, и, как правило, предоставлена возможность удаленного доступа на кластер через Internet.

Из определения архитектуры кластерных систем следует, что она включает в себя очень широкий спектр систем. Рассматривая крайние точки, кластером можно считать как пару ПК, связанных локальной 10-мегабитной сетью Ethernet, так и вычислительную систему, создаваемую в рамках проекта Cplant в Национальной лаборатории Sandia: 1400 рабочих станций на базе процессоров Alpha, связанных высокоскоростной сетью Myrinet.

Таким образом видно, что различных вариантов построения кластеров очень много. При этом в архитектуре кластера большое значение имеют используемые коммуникационные технологии и стандарты. Они во многом определяют круг задач, для решения которых можно использовать кластеры, построенные на основе этих технологий.

Коммуникационные технологии построения кластеров

Кластеры могут стоится как на основе специализированных высокоскоростных шин передачи данных, так и на основе массовых сетевых технологий. Среди массовых коммуникационных стандартов сейчас чаще всего используется сеть Ethernet или более ее производительный вариант - Fast Ethernet, как правило, на базе коммутаторов. Однако большие накладные расходы на передачу сообщений в рамках Fast Ethernet приводят к серьезным ограничениям на спектр задач, которые можно эффективно решать на таком кластере. Если от кластера требуется большая производительность и универсальность, то необходимо применять более скоростные и специализированные технологии. К ним относятся SCI, Myrinet, cLAN, ServerNet и др. Сравнительная характеристика параметров этих технологий приведена в
таблице 1.

ServerNet

Fast Ethernet

Латентность (MPI)

Пропускная способность(MPI)

180 Мбайт/c

Пропускная способность (аппаратная)

400 Мбайт/c

160 Мбайт/c

150 Мбайт/c

12,5 Мбайт/c

Реализация MPI

HPVM, MPICH-GM и др.

Таблица 1.

Производительность коммуникационных сетей в кластерных системах определяется несколькими числовыми характеристиками. Основных характеристик две: латентность – время начальной задержки при посылке сообщений и пропускная способность сети, определяющая скорость передачи информации по каналам связи. При этом важны не столько пиковые характеристики, заявленные в стандарте, сколько реальные, достигаемые на уровне пользовательских приложений, например, на уровне MPI-приложений. В частности, после вызова пользователем функции посылки сообщения Send() сообщение последовательно пройдет через целый набор слоев, определяемых особенностями организации программного обеспечения и аппаратуры, прежде, чем покинуть процессор – поэтому существует существенный разбром по стандартам значений латентности. Наличие латентности приводит к тому, что максимальная скорость передачи по сети не может быть достигнута на сообщениях с небольшой длиной.

Скорость передачи данных по сети в рамках технологий Fast Ethernet и Scalable Coherent Interface (SCI) зависит от длины сообщения. Для Fast Ethernet характерна большая величина латентности – 160-180 мкс, в то время как латентность для SCI это величина около 5,6 мкс. Максимальная скорость передачи для этих же технологий 10 Мбайт/c и 80 Мбайт/с соответственно.

Цели создания кластерных систем

Разработчики архитектур кластерных систем приследовали различные цели при их создании. Первой была фирма Digital Equipment с кластерами VAX/VMS. Целью создания этой машины было повышение надежности работы системы, обеспечение высокой готовности и отказоустойчивости системы. В настоящее время существует множество аналогичных по архитектуре систем от других производителей.

Другой целью создания кластерных систем является создание дешевых высокопроизводительных параллельных вычислительных систем. Один из первых проектов, давший имя целому классу параллельных систем – кластер Beowulf – возник в центре NASA Goddard Space Flight Center для поддержки необходимыми вычислительными ресурсами проекта Earth and Space Sciences. Проект Beowulf начался летом 1994 года, и вскоре был собран 16-процессорный кластер на процессорах Intel 486DX4/100 МГц. На каждом узле было установлено по 16 Мбайт оперативной памяти и по 3 сетевых Ethernet-адаптера. Эта система оказалась очень удачной по отношению цена/производительность, поэтому такую архитектуру стали развивать и широко использовать в других научных организациях и институтах.

Для каждого класса кластеров характерны свои особенности архитекуры и применяемые аппаратные средства. Рассмотрим их более подробно.

Отказоустойчивые кластеры

Принципы построения

Для обеспечения надежности и отказоустойчивости вычислительных систем применяется множество различных аппаратурных и программных решений. Например, в системе может дублироваться все подверженные отказам элементы - источники питания, процессоры, оперативная и внешняя память. Такие отказоустойчивые системы с резервированием компонентов применяются для решения задач, в которых недостаточно надежности обычных вычислительных систем, оцениваемой в настоящий момент вероятностью безотказной работы 99%. В таких задачах требуется вероятность 99,999% и выше. Такую надежность можно достичь применяя отличные от приведенного выше методы повышения отказоустойчивости. В зависимости от уровня готовности вычислительной системы к использованию выделяют четыре типа надежности:

Уровень готовности, %

Мaкс. время простоя

Тип системы

3,5 дня в год

Обычная (Conventional)

8,5 часов в год

Высокая надежность (High Availability)

1 час в год

Отказоустойчивая (Fault Resilient)

5 минут в год

Безотказная (Fault Tolerant)

Таблица 2.

В отличие от отказоустойчивых систем с избыточными компонентами, а также различных вариантов многопроцессорности, кластеры объединяют относительно независимые друг от друга машины, каждую из которых можно остановить для профилактики или реконфигурирования, не нарушая при этом работоспособности кластера в целом. Высокая производительность кластера и сведение к минимуму времени простоев приложений достигается благодаря тому, что:

  • в случае сбоя ПО на одном из узлов приложение продолжает функционировать или автоматически перезапускается на других узлах кластера;
  • выход из строя одного из узлов (или нескольких) не приведет к краху всей кластерной системы;
  • профилактические и ремонтные работы, реконфигурацию или смену версий программного обеспечения, как правило, можно осуществлять в узлах кластера поочередно, не прерывая работы других узлов.

Неотъемлемой частью кластера является специальное программное обеспечение, которое, собственно, и решает проблему восстановления узла в случае сбоя, а также решает другие задачи. Кластерное ПО обычно имеет несколько заранее заданных сценариев восстановления работоспособности системы, а также может предоставлять администратору возможности настройки таких сценариев. Восстановление после сбоев может поддерживаться как для узла в целом, так и для отдельных его компонентов - приложений, дисковых томов и т.д. Эта функция автоматически инициируется в случае системного сбоя, а также может быть запущена администратором, если ему, например, необходимо отключить один из узлов для реконфигурации.

Кластеры могут иметь разделяемую память на внешних дисках, как правило, на дисковом массиве RAID. Дисковый массив RAID - это серверная подсистема ввода- вывода для хранения данных большого объема. В массивах RAID значительное число дисков относительно малой емкости используется для хранения крупных объемов данных, а также для обеспечения более высокой надежности и избыточности. Подобный массив воспринимается компьютером как единое логическое устройство.

Восстановление после сбоев может поддерживаться как для узла в целом, так и для отдельных его компонентов - приложений, дисковых томов и т.д. Эта функция автоматически инициируется в случае системного сбоя, а также может быть запущена администратором, если ему, например, необходимо отключить один из узлов для реконфигурации.

Узлы кластера контролируют работоспособность друг друга и обмениваются специфической «кластерной» информацией, например, о конфигурации кластера, а также передавать данные между разделяемыми накопителями и координировать их использование. Контроль работоспособности осуществляется с помощью специального сигнала, который узлы кластера передают друг другу, для того чтобы подтвердить свое нормальное функционирование. Прекращение подачи сигналов с одного из узлов сигнализирует кластерному программному обеспечению о произошедшем сбое и необходимости перераспределить нагрузку на оставшиеся узлы. В качестве примера рассмотрим отказоустойчивый кластер VAX/VMS.

Кластера VAX/VMS

Компания DEC первой анонсировала концепцию кластерной системы в 1983 году, определив ее как группу объединенных между собой вычислительных машин, представляющих собой единый узел обработки информации. По существу VAX-кластер представляет собой слабосвязанную многомашинную систему с общей внешней памятью, обеспечивающую единый механизм управления и администрирования.

VAX-кластер обладает следующими свойствами:

Разделение ресурсов. Компьютеры VAX в кластере могут разделять доступ к общим ленточным и дисковым накопителям. Все компьютеры VAX в кластере могут обращаться к отдельным файлам данных как к локальным.

Высокая готовность. Если происходит отказ одного из VAX-компьютеров, задания его пользователей автоматически могут быть перенесены на другой компьютер кластера. Если в системе имеется несколько контроллеров HSC и один из них отказывает, другие контроллеры HSC автоматически подхватывают его работу.

Высокая пропускная способность . Ряд прикладных систем могут пользоваться возможностью параллельного выполнения заданий на нескольких компьютерах кластера.

Удобство обслуживания системы . Общие базы данных могут обслуживаться с единственного места. Прикладные программы могут инсталлироваться только однажды на общих дисках кластера и разделяться между всеми компьютерами кластера.

Расширяемость . Увеличение вычислительной мощности кластера достигается подключением к нему дополнительных VAX-компьютеров. Дополнительные накопители на магнитных дисках и магнитных лентах становятся доступными для всех компьютеров, входящих в кластер.

Работа VAX-кластера определяется двумя главными компонентами. Первым компонентом является высокоскоростной механизм связи, а вторым - системное программное обеспечение, которое обеспечивает клиентам прозрачный доступ к системному сервису. Физически связи внутри кластера реализуются с помощью трех различных шинных технологий с различными характеристиками производительности.

Основные методы связи в VAX-кластере представлены на рис. 4.

Рис. 4 VAX/VMS-кластер

Шина связи компьютеров CI (Computer Interconnect) работает со скоростью 70 Мбит/с и используется для соединения компьютеров VAX и контроллеров HSC с помощью коммутатора Star Coupler. Каждая связь CI имеет двойные избыточные линии, две для передачи и две для приема, используя базовую технологию CSMA, которая для устранения коллизий использует специфические для данного узла задержки. Максимальная длина связи CI составляет 45 метров. Звездообразный коммутатор Star Coupler может поддерживать подключение до 32 шин CI, каждая из которых предназначена для подсоединения компьютера VAX или контроллера HSC. Контроллер HSC представляет собой интеллектуальное устройство, которое управляет работой дисковых и ленточных накопителей.

Компьютеры VAX могут объединяться в кластер также посредством локальной сети

Ethernet, используя NI - Network Interconnect (так называемые локальные VAX-кластеры), однако производительность таких систем сравнительно низкая из-за необходимости делить пропускную способность сети Ethernet между компьютерами кластера и другими клиентами сети.

Также кластера могут стоиться на основе шины DSSI (Digital Storage System Interconnect). На шине DSSI могут объединяться до четырех компьютеров VAX нижнего и среднего класса. Каждый компьютер может поддерживать несколько адаптеров DSSI. Отдельная шина DSSI работает со скоростью 4 Мбайт/с (32 Мбит/с) и допускает подсоединение до 8 устройств. Поддерживаются следующие типы устройств: системный адаптер DSSI, дисковый контроллер серии RF и ленточный контроллер серии TF. DSSI ограничивает расстояние между узлами в кластере 25 метрами.

Системное программное обеспечение VAX-кластеров

Для гарантии правильного взаимодействия процессоров друг с другом при обращениях к общим ресурсам, таким, например, как диски, компания DEC использует распределенный менеджер блокировок DLM (Distributed Lock Manager). Очень важной функцией DLM является обеспечение когерентного состояния дисковых кэшей для операций ввода/вывода операционной системы и прикладных программ. Например, в приложениях реляционных СУБД DLM несет ответственность за поддержание согласованного состояния между буферами базы данных на различных компьютерах кластера.

Задача поддержания когерентности кэш-памяти ввода/вывода между процессорами в кластере подобна задаче поддержания когерентности кэш-памяти в сильно связанной многопроцессорной системе, построенной на базе некоторой шины. Блоки данных могут одновременно появляться в нескольких кэшах и если один процессор модифицирует одну из этих копий, другие существующие копии не отражают уже текущее состояние блока данных. Концепция захвата блока (владения блоком) является одним из способов управления такими ситуациями. Прежде чем блок может быть модифицирован должно быть обеспечено владение блоком.

Работа с DLM связана со значительными накладными расходами. Накладные расходы в среде VAX/VMS могут быть большими, требующими передачи до шести сообщений по шине CI для одной операции ввода/вывода. Накладные расходы могут достигать величины 20% для каждого процессора в кластере.

Высокопроизводительные кластеры

Принципы построения

Архитектура высокопроизводительных кластеров появилась как развитие принципов построения систем MPP на менее производительных и массовых компонентах, управляемых операционной ситемой общего назначения. Кластеры также как и MPP системы состоят из слабосвязанных узлов, которые могут быть как однородными, так и, в отличие от MPP, различными или гетерогенными. Особое внимание при проектировании высокопроизводительной кластерной архутектуры уделяется обеспечению высокой эффективности коммуникационной шины, связывающей узлы кластера. Так как в кластерах нередко применяются массовые относительно низкопроизводительные шины, то приходится принимать ряд мер по исключению их низкой пропускной способности на производительность кластеров и организацию эффективного распараллеливания в кластере. Так например пропускная способность одной из самых высокоскоростных технологий Fast Ethernet на порядки ниже, чем у межсоединений в современных суперкомпьютерах МРР-архитектуры.

Для решения проблем низкой производительности сети применяют несколько методов:

Кластер разделяется на несколько сегментов, в пределах которых узлы соединены высокопроизводительной шиной типа Myrinet, а связь между узлами разных сегментов осуществляется низкопроизводительными сетями типа Ethernet/Fast Ethernet. Это позволяет вместе с сокращением расходов на коммуникационную среду существенно повысить производительность таких кластеров при решении задач с интенсивным обменом данными между процессами.

Применение так называемого «транкинга», т.е. объединение нескольких каналов Fast Ethernet в один общий скоростной канал, соединяющий несколько коммутаторов. Очевидным недостатком такого подхода является «потеря» части портов, задействованных в межсоединении коммутаторов.

Для повышения производительности создаются специальные протоколы обмена информацией по таким сетям, которые позволяют более эффективно использовать пропускную способность каналов и снимают некоторые ограничения накладываемые стандартными протоколами (TCP/IP,IPX). Такой метод часто используют в ситемах класса Beowulf.

Основным качеством, которым должен обладать высокопроизводительный кластер являтся горизонтальная масштабируемость, так как одним из главных преимуществ, которые предоставляет кластерная архитектура является возможность наращивать мощность существующей системы за счет простого добавления новых узлов в систему. Причем увеличение мощности происходит практически пропорционально мощности добавленных ресурсов и может производиться без остановки системы во время ее функционирования. В системах с другой архитектурой (в частности MPP) обычно возможна только вертикальная масштабируемость: добавление памяти, увеличение числа процессоров в многопроцессорных системах или добавление новых адаптеров или дисков. Оно позволяет временно улучшить производительность системы. Однако в системе будет установлено максимальное поддерживаемое количество памяти, процессоров или дисков, системные ресурсы будут исчерпаны, и для увеличеия производительности придется создавать новую систему или существенно перерабатывать старую. Кластерная система также допускает вертикальную масштабируемость. Таким образом, за счет вертикального и горизонтального масштабирования кластерная модель обеспечивает большую гибкость и простоту увеличения производительности систем.

Проект Beowulf

Beowulf - это скандинавский эпос, повествующий о событиях VII - первой трети VIII века, участником которых является одноименный герой, прославивший себя в сражениях.

Одним из примеров реализации кластерной системы такой структуры являются кластеры Beowulf. Проект Beowulf объединил около полутора десятков организаций (главным образом университетов) в Соединенных Штатах. Ведущие разработчики проекта - специалисты агентства NASA. В данном виде кластеров можно выделить следующие основные особенности:

Кластер Beowulf состоит из нескольких отдельных узлов, объединенных в общую сеть, общие ресурсы узлами кластера не используются;

Оптимальным считается построение кластеров на базе двухпроцессорных SMP систем;

Для уменьшения накладных расходов на взаимодействие между узлами применяют полнодуплексный 100 MB Fast Ethernet (реже используют SCI), создают несколько сетевых сегментов или соединяют узлы кластера через коммутатор;

В качестве программного обеспечения применяют ОС Linux, и бесплатно распространяемые коммуникационные библиотеки (PVM и MPI);

История проекта Beowulf

Проект начался летом 1994 года в научно-космическом центре NASA - Goddard Space Flight Center (GSFC), точнее в созданном на его основе CESDIS (Center of Excellence in Space Data and Information Sciences).

Первый Beowulf-кластер был создан на основе компьютеров Intel архитектуры под ОС Linux. Это была система, состоящая из 16 узлов (на процессорах 486DX4/100MHz, 16MB памяти и 3 сетевых адаптера на каждом узле, 3 "параллельных" Ethernet-кабеля по 10Mbit). Он создавался как вычислительный ресурс проекта "Earth and Space Sciences Project" (ESS).

Далее в GSFC и других подразделениях NASA были собраны другие, более мощные кластеры. Например, кластер theHIVE (Highly-parallel Integrated Virtual Environment) содержит 64 узла по 2 процессора Pentium Pro/200MHz и 4GB памяти в каждом, 5 коммутаторов Fast Ethernet. Общая стоимость этого кластера составляет примерно $210 тыс. В рамках проекта Beowulf был разработан ряд высокопроизводительных и специализированных сетевых драйверов (в частности, драйвер для использования нескольких Ethernet-каналов одновременно).

Архитектура Beowulf

Узлы кластера.

Это или однопроцессорные ПК, или SMP-сервера с небольшим числом процессоров (2-4, возможно до 6). По некоторым причинам оптимальным считается построение кластеров на базе двухпроцессорных систем, несмотря на то, что в этом случае настройка кластера будет несколько сложнее (главным образом потому, что доcтупны относительно недорогие материнские платы для 2 процессоров Pentium II/III). Стоит установить на каждый узел 64-128MB оперативной памяти (для двухпроцессорных систем 64-256MB).

Одну из машин следует выделить в качестве центральной (головной) куда следует установить достаточно большой жесткий диск, возможно более мощный процессор и больше памяти, чем на остальные (рабочие) узлы. Имеет смысл обеспечить (защищенную) связь этой машины с внешним миром.

При комплектации рабочих узлов вполне возможно отказаться от жестких дисков - эти узлы будут загружать ОС через сеть с центральной машины, что, кроме экономии средств, позволяет сконфигурировать ОС и все необходимое ПО только 1 раз (на центральной машине). Если эти узлы не будут одновременно использоваться в качестве пользовательских рабочих мест, нет необходимости устанавливать на них видеокарты и мониторы. Возможна установка узлов в стойки (rackmounting), что позволит уменьшить место, занимаемое узлами, но будет стоить несколько дороже.

Возможна организация кластеров на базе уже существующих сетей рабочих станций, т.е. рабочие станции пользователей могут использоваться в качестве узлов кластера ночью и в выходные дни. Системы такого типа иногда называют COW (Cluster of Workstations).

Количество узлов следует выбирать исходя из необходимых вычислительных ресурсов и доступных финансовых средств. Следует понимать, что при большом числе узлов придется также устанавливать более сложное и дорогое сетевое оборудование.

Основные типы локальных сетей, задействованные в рамках проекта Beowulf, - это Gigabit Ethernet, Fast Ethernet и 100-VG AnyLAN. В простейшем случае используется один сегмент Ethernet (10Mbit/sec на витой паре). Однако дешевизна такой сети, вследствие коллизий оборачивается большими накладными расходами на межпроцессорные обмены; а хорошую производительность такого кластера следует ожидать только на задачах с очень простой параллельной структурой и при очень редких взаимодействиях между процессами (например, перебор вариантов).

Для получения хорошей производительности межпроцессорных обменов используют полнодуплексный Fast Ethernet на 100Mbit/sec. При этом для уменьшения числа коллизий или устанавливают несколько "параллельных" сегментов Ethernet, или соединяют узлы кластера через коммутатор (switch).

Более дорогостоящим, но также популярным вариантом являются использование коммутаторов типа Myrinet (1.28Gbit/sec, полный дуплекс).

Менее популярными, но также реально используемыми при построении кластеров сетевыми технологиями являются технологии сLAN, SCI и Gigabit Ethernet.

Иногда для связи между узлами кластера используют параллельно несколько физичеких каналов связи - так называемое «связывание каналов» (channel bonding), которое обычно применяется для технологии Fast Ethernet. При этом каждый узел подсоединяется к коммутатору Fast Ethernet более чем одним каналом. Чтобы достичь этого, узлы оснащаются либо несколькими сетевыми платами, либо многопортовыми платами Fast Ethernet. Применение связывания каналов в узлах под управлением ОС Linux позволяет организовать равномерное распределение нагрузки приема/передачи между соответствующими каналами.

Системное ПО

Операционная система. Обычно используется система Linux в версиях, специально оптимизированных под распределенные параллельные вычисления. Была проведена доработку ядра Linux 2.0. В процессе построения кластеров выяснилось, что стандартные драйверы сетевых устройств в Linux весьма неэффективны. Поэтому были разработаны новые драйверы, в первую очередь для сетей Fast Ethernet и Gigabit Ethernet, и обеспечена возможность логического объединения нескольких параллельных сетевых соединений между персональными компьютерами (аналогично аппаратному связыванию каналов) , что позволяет из дешевых локальных сетей, обладающих низкой пропускной способностью, соорудить сеть с высокой совокупной пропускной способностью.

Как и в любом кластере, на каждом узле кластера исполняется своя копия ядра ОС. Благодаря доработкам обеспечена уникальность идентификаторов процессов в рамках всего кластера, а не отдельных узлов.

Коммуникационные библиотеки. Наиболее распространенным интерфейсом параллельного программирования в модели передачи сообщений является MPI. Рекомендуемая бесплатная реализация MPI - пакет MPICH, разработанный в Аргоннской Национальной Лаборатории. Для кластеров на базе коммутатора Myrinet разработана система HPVM, куда также входит реализация MPI.

Для эффективной организации параллелизма внутри одной SMP-cистемы возможны два варианта:

  1. Для каждого процессора в SMP-машине порождается отдельный MPI-процесс. MPI-процессы внутри этой системы обмениваются сообщениями через разделяемую память (необходимо настроить MPICH соответствующим образом).
  2. На каждой машине запускается только один MPI-процесс. Внутри каждого MPI-процесса производится распараллеливание в модели "общей памяти", например с помощью директив OpenMP.

После установки реализации MPI имеет смысл протестировать реальную производительность сетевых пересылок.

Кроме MPI, есть и другие библиотеки и системы параллельного программирования, которые могут быть использованы на кластерах.

Пример реализации кластера Beowulf - Avalon

В 1998 году в Лос-аламосской национальной лаборатории астрофизик Michael Warren и другие ученые из группы теоретической астрофизики построили суперкомпьютер Avalon, который представляет из себя Beowulf -кластер на базе процессоров DEC Alpha/533MHz. Avalon первоначально состоял из 68 процессоров, затем был расширен до 140. В каждом узле установлено 256MB оперативной памяти, EIDE-жесткий диск на 3.2GB, сетевой адаптер от Kingston (общая стоимость узла - $1700). Узлы соединены с помощью 4-х 36-портовых коммутаторов Fast Ethernet и расположенного "в центре" 12-портового коммутатора Gigabit Ethernet от 3Com.

Общая стоимость Avalon - $313 тыс., а его производительность по LINPACK (47.7 GFLOPS) позволила ему занять 114 место в 12-й редакции списка Top500 (рядом с 152-процессорной системой IBM SP2). 70-процессорная конфигурация Avalon по многим тестам показала такую же производительность, как 64-процессорная система SGI Origin2000/195MHz стоимость которой превышает $1 млн.

В настоящее время Avalon активно используется в астрофизических, молекулярных и других научных вычислениях. На конференции SC"98 создатели Avalon представили доклад, озаглавленный "Avalon: An Alpha/Linux Cluster Achieves 10 Gflops for $150k" и заслужили премию по показателю цена/производительность ("1998 Gordon Bell Price/Performance Prize").

Заключение

Ведущие производители микропроцессоров: Sun Microsystems, Dell и IBM придерживаются одинаковой точки зрения на будущее отрасли суперкомпьютеров: на смену отдельным, независимым суперкомпьютерам должны прийти группы высокопроизводительных серверов, объединяемых в кластер. Уже сегодня распределенные кластерные системы опережают современные классические суперкомпьютеры по производительности: самый мощный на сегодняшний день компьютер в мире - IBM ASCI White - обладает производительностью в 12 ТераФЛОП, производительность сети SETI@Home оценивается примерно в 15 ТераФЛОП. При этом, IBM ASCI White был продан за 110 миллионов долларов, а за всю историю существования SETI@Home было потрачено около 500 тысяч долларов.

Литература

2. http://www.beowulf.com

3. http://newton.gsfc.nasa.gov/thehive/

4. LoBoS, http://www.lobos.nih.gov

5. http://parallel.ru/news/kentucky_klat2.html

6. http://parallel.ru/news/anl_chibacity.html

7. http://parallel.ru/cluster/

8. http://www.ptc.spbu.ru

MIMD компьютеры

MIMD компьютер имеет N процессоров, независимо исполняющих N потоков команд и обрабатывающих N потоков данных. Каждый процессор функционирует под управлением собственного потока команд, то есть MIMD компьютер может параллельно выполнять совершенно разные программы.


MIMD архитектуры далее классифицируются в зависимости от физической организации памяти, то есть имеет ли процессор свою собственную локальную память и обращается к другим блокам памяти, используя коммутирующую сеть, или коммутирующая сеть подсоединяет все процессоры к общедоступной памяти. Исходя из организации памяти, различают следующие типы параллельных архитектур:

  • Компьютеры с распределенной памятью (Distributed memory )
    Процессор может обращаться к локальной памяти, может посылать и получать сообщения, передаваемые по сети, соединяющей процессоры. Сообщения используются для осуществления связи между процессорами или, что эквивалентно, для чтения и записи удаленных блоков памяти. В идеализированной сети стоимость посылки сообщения между двумя узлами сети не зависит как от расположения обоих узлов, так и от трафика сети, но зависит от длины сообщения.

  • Компьютеры с общей (разделяемой) памятью (True shared memory )
    Все процессоры совместно обращаются к общей памяти, обычно, через шину или иерархию шин. В идеализированной PRAM (Parallel Random Access Machine - параллельная машина с произвольным доступом) модели, часто используемой в теоретических исследованиях параллельных алгоритмов, любой процессор может обращаться к любой ячейке памяти за одно и то же время. На практике масштабируемость этой архитектуры обычно приводит к некоторой форме иерархии памяти. Частота обращений к общей памяти может быть уменьшена за счет сохранения копий часто используемых данных в кэш-памяти, связанной с каждым процессором. Доступ к этому кэш-памяти намного быстрее, чем непосредственно доступ к общей памяти.

  • Компьютеры с виртуальной общей (разделяемой) памятью (Virtual shared memory )
    Общая память как таковая отсутствует. Каждый процессор имеет собственную локальную память и может обращаться к локальной памяти других процессоров, используя "глобальный адрес". Если "глобальный адрес" указывает не на локальную память, то доступ к памяти реализуется с помощью сообщений, пересылаемых по коммуникационной сети.

Примером машин с общей памятью могут служить:

  • Sun Microsystems (многопроцессорные рабочие станции)
  • Silicon Graphics Challenge (многопроцессорные рабочие станции)
  • Sequent Symmetry
  • Convex
  • Cray 6400.

Следующие компьютеры относятся к классу машин с распределенной памятью

  • IBM-SP1/SP2
  • Parsytec GC
  • CM5 (Thinking Machine Corporation)
  • Cray T3D
  • Paragon (Intel Corp.)
  • nCUBE
  • Meiko CS-2
  • AVX (Alex Parallel Computers)
  • IMS B008

MIMD архитектуры с распределенной памятью можно так же классифицировать по пропускной способности коммутирующей сети. Например, в архитектуре, в которой пары из процессора и модуля памяти (процессорный элемент) соединены сетью с топологий реш§тка , каждый процессор имеет одно и то же число подключений к сети вне зависимости от числа процессоров компьютера. Общая пропускная способность такой сети растет линейно относительно числа процессоров. С другой стороны в архитектуре, имеющей сеть с топологий гиперкуб , число соединений процессора с сетью является логарифмической функцией от числа процессоров, а пропускная способность сети растет быстрее, чем линейно по отношению к числу процессоров. В топологии клика каждый процессор должен быть соединен со всеми другими процессорами.


Сеть с топологией 2D реш§тка (тор )

Сеть с топологией 2D тор


Сеть с топологией клика

Национального Центра Суперкомпьютерных Приложений (университет шт. Иллинойс, Urbana-Champaign)

MPI: The Message Passing Interface

Название "интерфейс передачи сообщений", говорит само за себя. Это хорошо стандартизованный механизм для построения параллельных программ в модели обмена сообщениями. Существуют стандартные "привязки" MPI к языкам С/С++, Fortran 77/90. Существуют бесплатные и коммерческие реализации почти для всех суперкомпьютерных платформ, а также для сетей рабочих станций UNIX и Windows NT. В настоящее время MPI - наиболее широко используемый и динамично развивающийся интерфейс из своего класса.

Beowulf - кластеры на базе ОС Linux

Михаил Кузьминский

"Открытые системы"

На пороге тысячелетий мы имеем все шансы стать свидетелями монополизации компьютерной индустрии, которая может охватить как микропроцессоры, так и операционные системы. Конечно же, речь идет о микропроцессорах от Intel (Merced грозит вытеснить процессоры архитектуры RISC) и ОС от Microsoft.

В обоих случаях успех во многом определяется мощью маркетинговой машины, а не только "потребительскими" свойствами выпускаемых продуктов. По моему мнению, компьютерное сообщество еще не осознало масштабов возможных последствий.

Некоторые специалисты сопоставляют потенциальную монополизацию компьютерного рынка с наблюдавшимся в 70-е годы монопольным господством IBM - как в области мэйнфреймов, так и операционных систем. Я долгое время работаю с этой техникой и по мере распространения в нашей стране ОС Unix все больше осознаю многие преимущества операционной системы MVS производства IBM. Тем не менее я разделяю распространенную точку зрения, что подобная монополия не способствовала ускорению прогресса.

Западные университеты, которые в свое время одними из первых перешли к использованию Unix, по-прежнему в своих перспективных разработках опираются на эту систему, причем в качестве платформы все чаще избирается Linux. Одной из поучительных академических разработок и посвящена эта статья.

Linux как общественное явление

Мы уже не удивляемся тому, что Linux cтала заметным явлением компьютерной жизни. В сочетании с богатейшим набором свободно распространяемого программного обеспечения GNU эта операционная система стала чрезвычайно популярна у некоммерческих пользователей как у нас, так и за рубежом. Ее популярность все возрастает. Версии Linux существуют не только для платформы Intel x86, но и для других процессорных архитектур, в том числе DEC Alрha, и широко используются для приложений Internet, а также выполнения задач расчетного характера. Одним словом, Linux стала своеобразной "народной операционной системой". Hельзя, впрочем, сказать, что у Linux нет слабых мест; одно из них - недостаточная поддержка SMР-архитектур.

Самый дешевый способ нарастить компьютерные ресурсы, в том числе вычислительную мощность, - это построить кластер. Массивно-параллельные суперкомпьютеры с физически и логически распределенной оперативной памятью также можно рассматривать как своеобразные кластеры. Наиболее яркий пример такой архитектуры - знаменитый компьютер IBM SР2.

Весь вопрос в том, что связывает компьютеры (узлы) в кластер. В "настоящих" суперкомпьютерах для этого используется специализированная и поэтому дорогая аппаратура, призванная обеспечить высокую пропускную способность. В кластерах, как правило, применяются обычные сетевые стандарты - Ethernet, FDDI, ATM или HiРРI.

Кластерные технологии с использованием операционной системы Linux начали развиваться несколько лет назад и стали доступны задолго до появления Wolfрack для Windows NT. Так в середине 90-х годов и возник проект Beowulf.

Герой эпической поэмы

"Беовульф" - это скандинавский эпос, повествующий о событиях VII - первой трети VIII века, участником которых является одноименный герой, прославивший себя в сражениях. Неизвестно, задумывались ли авторы проекта, с кем ныне будет сражаться Beowulf (вероятно, с Windows NT?), однако героический образ позволил объединить в консорциум около полутора десятков организаций (главным образом университетов) в Соединенных Штатах. Нельзя сказать, что среди участников проекта доминируют суперкомпьютерные центры, однако кластеры "Локи" и "Мегалон" установлены в таких известных в мире высокопроизводительных вычислений центрах, как Лос-Аламос и лаборатория Sandia Министерства энергетики США; ведущие разработчики проекта - специалисты агентства NASA. Вообще, все без исключения кластеры, созданные участниками проекта, получают громкие имена.

Кроме Beowulf, известна еще одна близкая кластерная технология - NOW. В NOW персональные компьютеры обычно содержат информацию о самих себе и поставленных перед ними задачах, а в обязанности системного администратора такого кластера входит формирование данной информации. Кластеры Beowulf в этом отношении (то есть с точки зрения системного администратора) проще: там отдельные узлы не знают о конфигурации кластера. Лишь один выделенный узел содержит информацию о конфигурации; и только он имеет связь по сети с внешним миром. Все остальные узлы кластера объединены локальной сетью, и с внешним миром их связывает только "тоненький мостик" от управляющего узла.

Узлами в технологии Beowulf являются материнские платы ПК. Обычно в узлах задействованы также локальные жесткие диски. Для связи узлов используются стандартные типы локальных сетей. Этот вопрос мы рассмотрим ниже, сначала же остановимся на программном обеспечении.

Его основу в Beowulf составляет обычная коммерчески доступная ОС Linux, которую можно приобрести на CD-ROM. Первое время большинство участников проекта ориентировались на компакт-диски, издаваемые Slackware, а сейчас предпочтение отдаетcя версии RedHat.

В обычной ОС Linux можно инсталлировать известные средства распараллеливания в модели обмена сообщениями (LAM MРI 6.1, РVM 3.3.11 и другие). Можно также воспользоваться стандартом р-threads и стандартными средствами межпроцессорного взаимодействия, входящими в любую ОС Unix System V. В рамках проекта Beowulf были выполнены и серьезные дополнительные разработки.

Прежде всего следует отметить доработку ядра Linux 2.0. В процессе построения кластеров выяснилось, что стандартные драйверы сетевых устройств в Linux весьма неэффективны. Поэтому были разработаны новые драйверы (автор большинства разработок - Дональд Бекер), в первую очередь для сетей Fast Ethernet и Gigabit Ethernet, и обеспечена возможность логического объединения нескольких параллельных сетевых соединений между персональными компьютерами, что позволяет из дешевых локальных сетей, обладающих более чем скромной скоростью, соорудить сеть с высокой совокупной пропускной способностью.

Как и во всяком кластере, в каждом узле живет своя копия ядра ОС. Благодаря доработкам обеспечена уникальность идентификаторов процессов в рамках всего кластера, а не отдельных узлов, а также "удаленная доставка" сигналов ОС Linux.

Кроме того, надо отметить функции загрузки по сети (netbooting) при работе с материнскими платами Intel РR 440FX, причем они могут применяться и для работы с другими материнскими платами, снабженными AMI BIOS.

Очень интересные возможности предоставляют механизмы сетевой виртуальной памяти (Network Virtual Memory) или разделяемой распределенной памяти DSM (Distributed Shared Memory), позволяющие создать для процесса определенную "иллюзию" общей оперативной памяти узлов.

Сеть - дело тонкое

Поскольку для распараллеливания суперкомпьютерных приложений вообще, и кластерных в частности, необходима высокая пропускная способность и низкие задержки для обмена сообщениями между узлами, сетевые характеристики становятся параметрами, определяющими производительность кластера. Выбор микропроцессоров для узлов очевиден - это стандартные процессоры производства Intel; а вот с топологией кластера, типом сети и сетевых плат можно поэкспериментировать. Именно в этой области и проводились основные исследования.

При анализе различных сетевых плат ПК, представленных сегодня на рынке, особое внимание было уделено таким характеристикам, как эффективная поддержка широковещательной рассылки (multicasting), поддержка работы с пакетами больших размеров и т. д. Основные типы локальных сетей, задействованные в рамках проекта Beowulf, - это Gigabit Ethernet, Fast Ethernet и 100-VG AnyLAN. (Возможности ATM-технологии также активно исследовались, но, насколько известно автору, это делалось вне рамок данного проекта.)

Как самому собрать суперкомпьютер

Проанализировав итоги работ, выполненных в рамках проекта Beowulf, можно прийти к следующему выводу: найденные решения позволяют самостоятельно собрать высокопроизводительный кластер на базе стандартных для ПК компонентов и использовать обычное программное обеспечение. Среди самых крупных экземпляров нельзя не отметить 50-узловой кластер в CESDIS, включающий 40 узлов обработки данных (на базе одно- и двухпроцессорных плат Рentium Рro/200 МГц) и 10 масштабирующих узлов (двухпроцессорная плата Рentium Рro/166 МГц). Соотношение стоимость/пиковая производительность в таком кластере представляется очень удачным. Вопрос в том, насколько эффективно удается распараллелить приложения - иными словами, какова будет реальная, а не пиковая производительность. Над решением этой проблемы сейчас и работают участники проекта.

Следует отметить, что построение кластеров из обычных ПК становится сегодня достаточно модным в научной среде. Некоторые академические институты в нашей стране также планируют создать подобные кластеры.

При объединении в кластер компьютеров разной мощности или разной архитектуры, говорят о гетерогенных (неоднородных) кластерах. Узлы кластера могут одновременно использоваться в качестве пользовательских рабочих станций. В случае, когда это не нужно, узлы могут быть существенно облегчены и/или установлены в стойку.

Используются стандартные для рабочих станций ОС, чаще всего, свободно распространяемые - Linux/FreeBSD, вместе со специальными средствами поддержки параллельного программирования и распределения нагрузки. Программирование, как правило, в рамках модели передачи сообщений (чаще всего - MPI). Более подробно она рассмотрена в следующем параграфе.

История развития кластерной архитектуры.

Компания DEC первой анонсировала концепцию кластерной системы в 1983 году, определив ее как группу объединенных между собой вычислительных машин, представляющих собой единый узел обработки информации.

Один из первых проектов, давший имя целому классу параллельных систем – кластеры Beowulf – возник в центре NASA Goddard Space Flight Center для поддержки необходимыми вычислительными ресурсами проекта Earth and Space Sciences. Проект Beowulf стартовал летом 1994 года, и вскоре был собран 16-процессорный кластер на процессорах Intel 486DX4/100 МГц. На каждом узле было установлено по 16 Мбайт оперативной памяти и по 3 сетевых Ethernet-адаптера. Для работы в такой конфигурации были разработаны специальные драйверы, распределяющие трафик между доступными сетевыми картами.

Позже в GSFC был собран кластер theHIVE – Highly-parallel Integrated Virtual Environment , структура которого показана на рис. 2. Этот кластер состоит из четырех подкластеров E, B, G, и DL, объединяя 332 процессора и два выделенных хост-узла. Все узлы данного кластера работают под управлением RedHat Linux.

В 1998 году в Лос-Аламосской национальной лаборатории астрофизик Майкл Уоррен и другие ученые из группы теоретической астрофизики построили суперкомпьютер Avalon, который представляет собой Linux-кластер на базе процессоров Alpha 21164A с тактовой частотой 533 МГц. Первоначально Avalon состоял из 68 процессоров, затем был расширен до 140. В каждом узле установлено по 256 Мбайт оперативной памяти, жесткий диск на 3 Гбайт и сетевой адаптер Fast Ethernet. Общая стоимость проекта Avalon составила 313 тыс. долл., а показанная им производительность на тесте LINPACK – 47,7 GFLOPS, позволила ему занять 114 место в 12-й редакции списка Top500 рядом с 152-процессорной системой IBM RS/6000 SP. В том же 1998 году на самой престижной конференции в области высокопроизводительных вычислений Supercomputing’98 создатели Avalon представили доклад «Avalon: An Alpha/Linux Cluster Achieves 10 Gflops for $150k», получивший первую премию в номинации «наилучшее отношение цена/производительность».

В апреле текущего года в рамках проекта AC3 в Корнелльском Университете для биомедицинских исследований был установлен кластер Velocity+, состоящий из 64 узлов с двумя процессорами Pentium III/733 МГц и 2 Гбайт оперативной памяти каждый и с общей дисковой памятью 27 Гбайт. Узлы работают под управлением Windows 2000 и объединены сетью cLAN компании Giganet.

Проект Lots of Boxes on Shelfes реализован в Национальном Институте здоровья США в апреле 1997 года и интересен использованием в качестве коммуникационной среды технологии Gigabit Ethernet. Сначала кластер состоял из 47 узлов с двумя процессорами Pentium Pro/200 МГц, 128 Мбайт оперативной памяти и диском на 1,2 Гбайт на каждом узле. В 1998 году был реализован

следующий этап проекта – LoBoS2, в ходе которого узлы были преобразованы в настольные компьютеры с сохранением объединения в кластер. Сейчас LoBoS2 состоит из 100 вычислительных узлов, содержащих по два процессора Pentium II/450 МГц, 256 Мбайт оперативной и 9 Гбайт дисковой памяти. Дополнительно к кластеру подключены 4 управляющих компьютера с общим RAID-массивом емкостью 1,2 Тбайт.

Одной из последних кластерных разработок стал суперкомпьютер AMD Presto III, представляющий собой кластер Beowulf из 78 процессоров Athlon. Компьютер установлен в Токийском Технологическом Институте. На сегодняшний день AMD построила 8 суперкомпьютеров, объединенных в кластеры по методу Beowulf, работающих под управлением ОС Linux.

Кластеры IBM

RS/6000

Компания IBM предлагает несколько типов слабо связанных систем на базе RS/6000, объединенных в кластеры и работающих под управлением программного продукта High-Availability Clastered Multiprocessor/6000 (HACMP/6000).

Узлы кластера работают параллельно, разделяя доступ к логическим и физическим ресурсам пользуясь возможностями менеджера блокировок, входящего в состав HACMP/6000.

Начиная с объявления в 1991 году продукт HACMP/6000 постоянно развивался. В его состав были включены параллельный менеджер ресурсов, распределенный менеджер блокировок и параллельный менеджер логических томов, причем последний обеспечил возможность балансировки загрузки на уровне всего кластера. Максимальное количество узлов в кластере возросло до восьми. В настоящее время в составе кластера появились узлы с симметричной многопроцессорной обработкой, построенные по технологии Data Crossbar Switch, обеспечивающей линейный рост производительности с увеличением числа процессоров.

Кластеры RS/6000 строятся на базе локальных сетей Ethernet, Token Ring или FDDI и могут быть сконфигурированы различными способами с точки зрения обеспечения повышенной надежности:

  • Горячий резерв или простое переключение в случае отказа. В этом режиме активный узел выполняет прикладные задачи, а резервный может выполнять некритичные задачи, которые могут быть остановлены в случае необходимости переключения при отказе активного узла.
  • Симметричный резерв. Аналогичен горячему резерву, но роли главного и резервного узлов не фиксированы.
  • Взаимный подхват или режим с распределением нагрузки. В этом режиме каждый узел в кластере может "подхватывать" задачи, которые выполняются на любом другом узле кластера.

IBM SP2

IBM SP2 лидируют в списке крупнейших суперкомпьютеров TOP500 по числу инсталляций (141 установка, а всего в мире работает 8275 таких компьютеров с общим числом узлов свыше 86 тыс. В основу этих суперкомпьютеров заложенный в основу архитектуры кластерный подход с использованием мощного центрального коммутатора. IBM использует этот подход уже много лет.

Общая архитектура SP2

Общее представление об архитектуре SP2 дает рис. 1. Основная ее особенность архитектуры - применение высокоскоростного коммутатора с низкими задержками для соединения узлов между собой. Эта внешне предельно простая схема, как показал опыт, оказалась чрезвычайно гибкой. Сначала узлы SP2 были однопроцессорными, затем появились узлы с SMP-архитектурой.

Собственно, все детали скрываются в строении узлов. Мало того, узлы бывают различных типов, причем даже процессоры в соседних узлах могут быть разными. Это обеспечивает

большую гибкость выбора конфигураций. Общее число узлов в вычислительной системе может достигать 512. Узлы SP2 фактически являются самостоятельными компьютерами, и их прямые аналоги продаются корпорацией IBM под самостоятельными названиями. Наиболее ярким примером этого является четырехпроцессорный SMP-сервер RS/6000 44P-270 c микропроцессорами Power3-II, который сам по себе можно отнести к классу компьютеров среднего класса или даже к мини-суперкомпьютерам.

Устанавливавшиеся в узлах SP2 микропроцессоры развивались по двум архитектурным линиям: Power - Power2 - Power3 - Power3-II и по линии PowerPC вплоть до модели 604e с тактовой частотой 332 МГц.

Традиционными для SP2 являются «тонкие» (Thin Node) и «широкие» (Wide Node) узлы, обладающие SMP-архитектурой. В них могут устанавливаться как PowerPC 604e (от двух до четырех процессоров), так и Power3-II (до четырех). Емкость оперативной памяти узлов составляет от 256 Мбайт до 3 Гбайт (при использовании Power3-II - до 8 Гбайт). Основные отличия между тонкими и широкими узлами касаются подсистемы ввода/вывода. Широкие узлы предназначены для задач, требующих более мощных возможностей ввода/вывода: в них имеется по десять слотов PCI (в том числе три 64-разрядных) против двух слотов в тонких узлах. Соответственно, и число монтажных отсеков для дисковых устройств в широких узлах больше.

Быстродействие коммутатора характеризуется низкими величинами задержек: 1,2 мс (до 2 мс при числе узлов свыше 80). Это на порядок лучше того, что можно получить в современных Linux-кластерах Beowulf. Пиковая пропускная способность каждого порта: она составляет 150 Мбайт/с в одном направлении (то есть 300 Мбайт/с при дуплексной передаче). Той же пропускной способностью обладают и расположенные в узлах SP2 адаптеры коммутатора. IBM приводит также отличные результаты по задержкам и пропускной способности.

Наиболее мощные узлы SP2 - «высокие» (High Node). Высокий узел - это комплекс, состоящий из вычислительного узла с подсоединенными устройствами расширения ввода/вывода в количестве до шести штук. Такой узел также обладает SMP-архитектурой и содержит до 8 процессоров Power3 с тактовой частотой 222 или 375 МГц.

Кроме того, узел этого типа содержит плату ввода/вывода, которая также подсоединена к системной плате. Плата ввода/вывода содержит два симметричных логических блока SABER, через которые осуществляется передача данных к внешним устройствам, таким

как диски и телекоммуникационное оборудование. На плате ввода/вывода имеется четыре слота 64-разрядной шины PCI и один 32-разрядный слот (частота 33 МГц), а также интегрированы контроллеры UltraSCSI, Ethernet 10/100 Мбит/с, три последовательных и один параллельный порт.

C появлением высоких узлов и микропроцессоров Power3-II/375 МГц на тестах Linpack parallel системы IBM SP2 достигли производительности 723,4 GFLOPS. Этот результат достигнут при использовании 176 узлов (704 процессора). Учитывая, что узлов можно установить до 512, этот результат показывает, что серийно выпускаемые IBM SP2 потенциально близки к отметке 1 TFLOPS.

Кластерные решения Sun Microsystems

Sun Microsystems предлагает кластерные решения на основе своего продукта SPARCclaster PDB Server, в котором в качестве узлов используются многопроцессорные SMP-серверы SPARCserver 1000 и SPARCcenter 2000. Максимально в состав SPARCserver 1000 могут входить до восьми процессоров, а в SPARCcenter 2000 до 20 процессоров SuperSPARC. В комплект базовой поставки входят следующие компоненты: два кластерных узла на основе SPARCserver 1000/1000E или SPARCcenter 2000/2000E, два дисковых массива SPARCstorage Array, а также пакет средств для построения кластера, включающий дублированное оборудование для осуществления связи, консоль управления кластером Claster Management Console, программное обеспечение SPARCclaster PDB Software и пакет сервисной поддержки кластера.

Для обеспечения высокой производительности и готовности коммуникаций кластер поддерживает полное дублирование всех магистралей данных. Узлы кластера объединяются с помощью каналов SunFastEthernet с пропускной способностью 100 Мбит/с. Для подключения дисковых подсистем используется оптоволоконный интерфейс Fibre Channel с пропускной способностью 25 Мбит/с, допускающий удаление накопителей и узлов друг от друга на расстояние до 2 км. Все связи между узлами, узлами и дисковыми подсистемами дублированы на аппаратном уровне. Аппаратные, программные и сетевые средства кластера обеспечивают отсутствие такого места в системе, одиночный отказ или сбой которого выводил бы всю систему из строя.

Университетские проекты

Интересная разработка Университета штата Кентукки – кластер KLAT2 (Kentucky Linux Athlon Testbed 2 ). Система KLAT2 состоит из 64 бездисковых узлов с процессорами AMD Athlon/700 МГц и оперативной памятью 128 Мбайт на каждом. Программное обеспечение, компиляторы и математические библиотеки (SCALAPACK, BLACS и ATLAS) были доработаны для эффективного использования технологии 3DNow! процессоров AMD, что позволило увеличить производительность. Значительный интерес представляет и использованное сетевое решение, названное «Flat Neighbourghood Network» (FNN). В каждом узле установлено четыре сетевых адаптера Fast Ethernet от Smartlink, а узлы соединяются с помощью девяти 32-портовых коммутаторов. При этом для любых двух узлов всегда есть прямое соединение через один из коммутаторов, но нет необходимости в соединении всех узлов через единый коммутатор. Благодаря оптимизации программного обеспечения под архитектуру AMD и топологии FNN удалось добиться рекордного соотношения цена/производительность – 650 долл. за 1 GFLOPS.

Идея разбиения кластера на разделы получила интересное воплощение в проекте Chiba City , реализованном в Аргоннской Национальной лаборатории. Главный раздел содержит 256 вычислительных узлов, на каждом

из которых установлено два процессора Pentium III/500 МГц, 512 Мбайт оперативной памяти и локальный диск емкостью 9 Гбайт. Кроме вычислительного раздела в систему входят раздел визуализации (32 персональных компьютера IBM Intellistation с графическими платами Matrox Millenium G400, 512 Мбайт оперативной памяти и дисками 300 Гбайт), раздел хранения данных (8 серверов IBM Netfinity 7000 с процессорами Xeon/500 МГц и дисками по 300 Гбайт) и управляющий раздел (12 компьютеров IBM Netfinity 500). Все они объединены сетью Myrinet, которая используется для поддержки параллельных приложений, а также сетями Gigabit Ethernet и Fast Ethernet для управляющих и служебных целей. Все разделы делятся на «города» (town) по 32 компьютера. Каждый из них имеет своего «мэра», который локально обслуживает свой «город», снижая нагрузку на служебную сеть и обеспечивая быстрый доступ к локальным ресурсам.

Кластерные проекты в России

В России всегда была высока потребность в высокопроизводительных вычислительных ресурсах, и относительно низкая стоимость кластерных проектов послужила серьезным толчком к широкому распространению подобных решений в нашей стране. Одним из первых появился кластер «Паритет», собранный в ИВВиБД и состоящий из восьми процессоров Pentium II, связанных сетью Myrinet. В 1999 году вариант кластерного решения на основе сети SCI был апробирован в НИЦЭВТ, который, по сути дела, и был пионером использования технологии SCI для построения параллельных систем в России.

Высокопроизводительный кластер на базе коммуникационной сети SCI, установлен в Научно-исследовательском вычислительном центре Московского государственного университета . Кластер НИВЦ включает 12 двухпроцессорных серверов «Эксимер» на базе Intel Pentium III/500 МГц, в общей сложности 24 процессора с суммарной пиковой производительностью 12 млрд. операций в секунду. Общая стоимость системы – около 40 тыс. долл. или примерно 3,33 тыс. за 1 GFLOPS.

Вычислительные узлы кластера соединены однонаправленными каналами сети SCI в двумерный тор 3x4 и одновременно подключены к центральному серверу через вспомогательную сеть Fast Ethernet и коммутатор 3Com Superstack. Сеть SCI – это ядро кластера, делающее данную систему уникальной вычислительной установкой суперкомпьютерного класса, ориентированной на широкий класс задач. Максимальная скорость обмена данными по сети SCI в приложениях пользователя составляет более 80 Мбайт/с, а время латентности около 5,6 мкс. При построении данного вычислительного кластера использовалось интегрированное решение Wulfkit, разработанное компаниями Dolphin Interconnect Solutions и Scali Computer (Норвегия).

Основным средством параллельного программирования на кластере является MPI (Message Passing Interface) версии ScaMPI 1.9.1. На тесте LINPACK при решении системы линейных уравнений с матрицей размера 16000х16000 реально полученная производительность составила более 5,7 GFLOPS. На тестах пакета NPB производительность кластера сравнима, а иногда и превосходит производительность суперкомпьютеров семейства Cray T3E с тем же самым числом процессоров.

Основная область применения вычислительного кластера НИВЦ МГУ – это поддержка фундаментальных научных исследований и учебного процесса.

Из других интересных проектов следует отметить решение, реализованное в Санкт-Петербургском университете на базе технологии Fast Ethernet : собранные кластеры могут использоваться и как полноценные независимые учебные классы, и как единая вычислительная установка, решающая единую задачу. В Самарском научном центре

пошли по пути создания неоднородного вычислительного кластера, в составе которого работают компьютеры на базе процессоров Alpha и Pentium III. В Санкт-Петербургском техническом университете собирается установка на основе процессоров Alpha и сети Myrinet без использования локальных дисков на вычислительных узлах. В Уфимском государственном авиационном техническом университете проектируется кластер на базе двенадцати Alpha-станций, сети Fast Ethernet и ОС Linux.

Некоторые соображения о том, в каких случаях имеет смысл применять кластеры высокой готовности для защиты приложений.

Одна из основных задач при эксплуатации ИТ-системы в каком-либо бизнесе состоит в том, чтобы обеспечить непрерывность предоставляемого сервиса. Однако очень часто и инженеры, и руководители ИТ-служб не совсем четко представляют себе, в чем же выражается «непрерывность» конкретно в их бизнесе. На взгляд автора, это связано с неоднозначностью и расплывчатостью самого понятия непрерывности, из-за чего не всегда можно четко сказать, какой период дискретизации считать непрерывным и какой интервал будет промежутком недоступности. Усугубляет ситуацию и множество технологий, призванных в конечном счете решать одну общую задачу, но разными способами.

Какую технологию стоит выбрать в каждом конкретном случае для решения поставленных задач в рамках имеющегося бюджета? В данной статье мы подробно рассмотрим один из наиболее популярных подходов к защите приложений, а именно внесение аппаратной и программной избыточности, т. е. построение кластера высокой готовности. Задача эта, несмотря на кажущуюся простоту реализации, на самом деле весьма сложна в тонкой настройке и эксплуатации. Помимо описания хорошо известных конфигураций мы постараемся показать, какие еще возможности — не слишком часто используемые - имеются в таких решениях, как устроены разные реализации кластеров. Кроме того, часто хотелось бы, чтобы заказчик, серьезно взвесив все преимущества кластерного подхода, все же имел в виду и его недостатки, а потому рассматривал бы весь спектр возможных решений.

Что угрожает приложениям...

По разным оценкам, 55-60% приложений критичны для бизнеса компании - это означает, что отсутствие сервиса, который предоставляют данные приложения, серьезно отразится на финансовом благополучии фирмы. В связи с этим понятие доступности становится фундаментальным аспектом в деятельности вычислительного центра. Давайте посмотрим, откуда же исходят угрозы доступности приложений.

Разрушение данных. Одна из основных проблем в доступности сервиса. Простейший способ защиты - делать частые «мгновенные снимки» данных с тем расчетом, чтобы в любой момент времени иметь возможность вернуться к целостной копии.

Аппаратная неисправность. Производители аппаратных комплексов (серверов, дисковых хранилищ) выпускают решения с избыточностью компонентов - процессорных плат, системных контроллеров, блоков питания и т. п. Тем не менее в отдельных случаях аппаратная неисправность может привести к недоступности приложений.

Ошибка в приложении. Ошибка программиста в уже протестированном и запущенном в производство приложении может проявиться в одном случае на десятки и даже сотни тысяч, но если все же такой инцидент имеет место, то он приводит к непосредственной потере прибыли организации, поскольку прекращается обработка транзакций, а способ устранения ошибки неочевиден и требует времени.

Человеческая ошибка. Простой пример: администратор вносит изменения в настройку конфигурационных файлов, к примеру, DNS. Когда он тестирует изменения, сервис DNS работает, а вот сервис, который использует DNS, например, электронная почта, начинает испытывать проблемы, которые выявляются не сразу.

Плановое обслуживание. Обслуживание системы - замена компонентов, установка пакетов обновлений, перезагрузка - составляет основную причину недоступности. По оценке Gartner, 80% времени, в течение которого система недоступна, - это плановые простои.

Общие проблемы на вычислительной площадке. Даже если организация делает все, чтобы защититься от локальных проблем, это не гарантирует доступности сервиса в том случае, если по каким-то причинам оказывается недоступна вся площадка. Это также необходимо учитывать при планировании системы.

...и как с этим бороться

В зависимости от критичности задачи можно использовать следующие механизмы восстановления работоспособности вычислительной системы.

Резервное копирование данных на ленточный или дисковый носитель. Это базовый уровень обеспечения доступности - самый простой, дешевый, но и самый медленный.

Локальное зеркалирование. Предоставляет доступность данных в реальном времени, данные защищены от разрушения.

Локальная кластеризация. Как только организована защита данных, следующий шаг в обеспечении доступности приложений - локальная кластеризация, т. е. создание избыточности в части как оборудования, так и ПО.

Удаленная репликация. Здесь предполагается разнесение вычислительных площадок с целью создания копии данных в разнесенных ЦОД.

Удаленная кластеризация. Поскольку обеспечена доступность данных на разных площадках, есть возможность также поддерживать доступность сервиса с разных площадок путем организации доступа приложений к этим данным.

Мы не будем здесь останавливаться на описании всех этих способов, поскольку каждый пункт вполне может стать темой отдельной статьи. Идея прозрачна - чем большую избыточность мы вносим, тем выше стоимость решения, но тем лучше защищены приложения. Для каждого из перечисленных выше способов имеется арсенал решений от разных производителей, но с типовым набором возможностей. Для проектировщика решения очень важно держать в уме все эти технологии, так как только грамотное их сочетание приведет к исчерпывающему решению поставленной заказчиком задачи.

На взгляд автора, для понимания стратегии восстановления сервиса весьма удачен подход компании Symantec (рис. 1). Здесь есть два ключевых момента - точка, в которую система восстанавливается (recovery point objective, RPO), и время, требуемое на восстановление сервиса (recovery time objective, RTO).

Выбор того или иного средства зависит от конкретных требований, которые предъявляются к критичному приложению или базе данных.

Для самых критичных систем RTO и RPO не должны превышать 1 ч. Системы на основе ленточного резервного копирования предоставляют точку восстановления в два или более дней. Кроме того, восстановление с ленты не автоматизировано, администратор должен постоянно помнить, все ли он должным образом восстановил и запустил.

Более того, как уже упоминалось, при планировании схемы доступности одного средства оказывается недостаточно. Например, вряд ли имеет смысл применять только систему репликаций. Несмотря на то, что критичные данные располагаются на удаленной площадке, приложения должны быть запущены в соответствующем порядке вручную. Таким образом, репликацию без автоматического запуска приложений можно рассматривать как разновидность дорогого резервного копирования.

Если требуется предоставить RTO и RTS, измеряемое минутами, т. е. задача требует минимизации простоев (как плановых, так и незапланированных), то единственно верное решение - кластер высокой готовности. В настоящей статье рассматриваются именно такие системы.

Ввиду того, что понятие «вычислительный кластер» с некоторых пор перегружено из-за большого их разнообразия, вначале скажем немного о том, какие бывают кластеры.

Типы кластеров

В простейшем представлении кластер - это система функционирующих совместно компьютеров для совместного решения задач. Это не клиент-серверная модель обработки данных, где приложение может быть логически разделено таким образом, что клиенты могут направлять запросы к разным серверам. Идея кластера заключается в объединении вычислительных ресурсов связанных узлов для создания избыточных ресурсов, обеспечивающих большую совместную вычислительную мощность, высокую степень доступности и масштабируемость. Таким образом, кластеры не просто обрабатывают запросы клиентов к серверам, а одновременно используют множество компьютеров, представляя их как единую систему и тем самым обеспечивая существенно большие вычислительные возможности.

Кластер компьютеров должен быть самоорганизующейся системой - работа, выполняемая на одном из узлов, должна быть скоординирована с работой на других узлах. Это ведет к сложности конфигурационных связей, непростым коммуникациям между узлами кластера, необходимости решения проблемы доступа к данным в общей файловой системе. Существуют также вопросы эксплуатации, связанные с функционированием потенциально большого количества компьютеров как единого ресурса.

Кластеры могут существовать в различных формах. К наиболее общим типам кластеров относятся системы повышенной производительности (high performance computing, HPC) и системы высокой доступности (high availability, HA).

Кластеры высокопроизводительных вычислений используют параллельные методы вычислений при участии как можно большей мощности процессоров для решения поставленной задачи. Существует много примеров таких решений в сфере научных вычислений, где множество процессоров с невысокой стоимостью используются параллельно для выполнения большого числа операций.

Однако тема данной статьи - системы высокой доступности. Поэтому далее, говоря о кластерах, мы будем иметь в виду именно такие системы.

Как правило, при построении кластеров высокой степени доступности для создания надежного окружения используется избыточность, т. е. создается вычислительная система, в которой выход из строя одного или более компонентов (аппаратуры, ПО или сетевых средств) не оказывает существенного влияния на доступность приложения или системы в целом.

В простейшем случае это два идентично сконфигурированных сервера с доступом к разделяемой системе хранения данных (рис. 2). В процессе нормального функционирования прикладное ПО выполняется на одной системе, в то время как вторая система находится в ожидании запуска приложений при выходе из строя первой системы. При обнаружении сбоя вторая система переключает на себя соответствующие ресурсы (файловую систему, сетевые адреса и т. д.). Этот процесс обычно называется восстановлением после отказа (failover). Вторая система полностью заменяет собой отказавшую, и пользователю совершенно необязательно знать, что его приложения выполняются на различных физических машинах. Это и есть наиболее распространенная двухузловая ассиметричная конфигурация, где один сервер активен, другой пассивен, т. е. находится в состоянии ожидания на случай неисправности основного. На практике именно эта схема работает в большинстве компаний.

Однако необходимо задаться вопросом: насколько приемлемо держать дополнительный комплект оборудования, который фактически находится в резерве и большую часть времени не используется? Проблема с незагруженным оборудованием решается путем изменения кластерной схемы и распределения ресурсов в ней.

Конфигурации кластеров

Кроме упомянутой выше двухузловой ассиметричной структуры кластера возможны варианты, которые у разных производителей кластерного ПО могут носить различные названия, но суть их одинакова.

Симметричный кластер

Симметричный кластер также выполнен на двух узлах, но на каждом их них работает активное приложение (рис. 3). Кластерное ПО обеспечивает корректный автоматический переход приложения с сервера на сервер при отказе одного из узлов. В этом случае загрузка оборудования оказывается более эффективной, но при возникновении неисправности получается, что на одном сервере работают приложения всей системы, что может иметь нежелательные последствия в плане производительности. Кроме того, необходимо учитывать, возможна ли работа нескольких приложений на одном сервере.

Конфигурация N+1

В эту конфигурацию уже входит более двух узлов, и среди них имеется один выделенный, резервный (рис. 4). Иначе говоря, на N работающих серверов приходится один, находящийся в горячем резерве. В случае неисправности приложение с проблемного узла «переедет» на выделенный свободный узел. В дальнейшем администратор кластера сможет заменить неисправный узел и назначить его резервным.

Разновидность N+1 - менее гибкая конфигурация N к 1, когда резервный узел всегда остается постоянным для всех рабочих узлов. В случае выхода из работы активного сервера сервис переключается на резервный, и система остается без резерва до тех пор, пока не будет активирован вышедший из строя узел.

Из всех конфигураций кластеров N+1, наверное, самая эффективная по соотношению сложности и эффективности использования оборудования. Приведенная ниже табл. 1 подтверждает эту оценку.

Конфигурация N к N

Это самая эффективная конфигурация по уровню использования вычислительных ресурсов (рис. 5). Все серверы в ней рабочие, на каждом из них работают приложения, входящие в кластерную систему. При возникновении неисправности на одном из узлов приложения перемещаются с него в соответствии с установленными политиками на оставшиеся серверы.

При проектировании такой системы необходимо учитывать совместимость приложений, их связи при «переезде» с узла на узел, загрузку серверов, пропускную способность сети и многое другое. Эта конфигурация наиболее сложна в проектировании и эксплуатации, но она обеспечивает максимальную отдачу от оборудования при использовании кластерного резервирования.

Оценка кластерных конфигураций

В табл. 1 суммируется сказанное выше о различных конфигурациях кластеров. Оценка дается по четырехбалльной шкале (4 - высший балл, 1 – низший).

Из табл. 1 видно, что наиболее проста в плане проектирования и эксплуатации классическая ассиметричная система. И если ее заказчик может эксплуатировать самостоятельно, то остальные было бы правильно передать на внешнее обслуживание.

В заключение разговора о конфигурациях хотелось бы сказать несколько слов о критериях, в соответствии с которыми ядро кластера может автоматически дать команду на «переезд» приложения с узла на узел. Подавляющее число администраторов в конфигурационных файлах определяют лишь один критерий - недоступность какой-либо составляющей узла, т. е. программно-аппаратная ошибка.

Между тем современное кластерное ПО предоставляет возможность балансировки нагрузки. Если нагрузка на одном из узлов достигает критического значения, при правильно настроенной политике приложение на нем корректно погасится и запустится на другом узле, где текущая загрузка позволяет это сделать. Причем средства контроля загрузки сервера могут быть как статическими - приложение в конфигурационном файле кластера само указывает, сколько ресурсов ему потребуется, - так и динамическими, когда средство балансировки нагрузки интегрируется с внешней утилитой (например, Precise), которая вычисляет текущую загрузку системы.

Теперь, чтобы понять, как работают кластеры в конкретных реализациях, рассмотрим основные составляющие любой системы высокой доступности.

Основные компоненты кластера

Как любой сложный комплекс, кластер независимо от конкретной реализации состоит из аппаратной и программной составляющих.

Что касается аппаратуры, на которой собирается кластер, основная составляющая здесь - межузловое соединение или внутренний кластерный интерконнект, обеспечивающий физическую и логическую связь серверов. На практике это внутренняя сеть Ethernet с продублированными соединениями. Ее назначение - во первых, передача пакетов, подтверждающих целостность системы (так называемых heartbeat), а во-вторых, при определенном дизайне или схеме, возникшей после возникновения неисправности, - обмен между узлами информационным трафиком, предназначенным для передачи вовне. Другие компоненты очевидны: узлы, на которых запущена ОС с кластерным ПО, дисковые хранилища, к которым имеют доступ узлы кластера. И наконец, общая сеть, через которую идет взаимодействие кластера с внешним миром.

Программные компоненты обеспечивают управление работой кластерного приложения. Прежде всего это общая ОС (необязательно общая версия). В среде этой ОС работает ядро кластера - кластерное ПО. Те приложения, которые кластеризуются, т. е. могут мигрировать с узла на узел, управляются - запускаются, останавливаются, тестируются - небольшими скриптами, так называемыми агентами. Для большинства задач имеются стандартные агенты, однако на стадии проектирования обязательно необходимо проверить по матрице совместимости, есть ли агенты для конкретных приложений.

Реализации кластеров

На рынке ПО существует много реализаций описанных выше кластерных конфигураций. Практически все крупнейшие производители серверов и ПО - например, Microsoft, HP, IBM, Sun, Symantec - предлагают свои продукты в этой области. Компания «Микротест» имеет опыт работы с решениями Sun Cluster Server (SC) от Sun Microsystems (www.sun.com) и Veritas Cluster Server (VCS) от Symantec (www.symantec.com). С точки зрения администратора по функционалу эти продукты очень похожи - предоставляют одинаковые возможности настройки и реакций на события. Однако по своей внутренней организации это совершенно разные продукты.

SC разработан Sun для собственной ОС Solaris и потому работает только в среде этой ОС (как на платформе SPARC, так и на x86). Как следствие SC при инсталляции глубоко интегрируется с ОС и становится ее частью, частью ядра Solaris.

VCS - продукт многоплатформенный, работает практически со всеми популярными ныне ОС - AIX, HP-UX, Solaris, Windows, Linux, и представляет собой надстройку - приложение, которое управляет работой других приложений, подлежащих кластеризации.

Мы рассмотрим внутреннюю реализацию этих двух систем - SC и VCS. Но еще раз подчеркнем, что несмотря на различие в терминологии и совершенно разное внутреннее устройство основные компоненты обеих систем, с которыми взаимодействует администратор, по сути своей одинаковы.

Программные компоненты Sun Cluster Server

В качестве ядра SC (рис. 6) выступает ОС Solaris 10 (или 9) с надстроенной оболочкой, обеспечивающей функцию высокой доступности (ядро выделено зеленым цветом). Далее идут глобальные компоненты (светло-зеленого цвета), которые предоставляют свои службы, полученные от кластерного ядра. И наконец, на самом верху - пользовательские компоненты.

HA framework - это компонент, расширяющий ядро Solaris для предоставления кластерных служб. Задача framework начинается с инициализации кода, загружающего узел в кластерный режим. Основные задачи framework - межузловое взаимодействие, управление состоянием кластера и членством в нем.

Модуль межузлового взаимодействия передает сообщения heartbeating между узлами. Это короткие сообщения, подтверждающие отклик соседнего узла. Взаимодействием данных и приложений также управляет HA framework как частью межузлового взаимодействия. Кроме того, framework управляет целостностью кластерной конфигурации и при необходимости выполняет задачи восстановления и обновления. Целостность поддерживается через кворум-устройство; при необходимости выполняется реконфигурация. Кворум-устройство - это дополнительный механизм проверки целостности узлов кластера через небольшие участки общей файловой системы. В последней версии кластера SC 3.2 появилась возможность назначать кворум-устройство вне кластерной системы, т. е. использовать дополнительный сервер на платформе Solaris, доступный по TCP/IP. Неисправные члены кластера выводятся из конфигурации. Элемент, который вновь оказывается работоспособен, автоматически включается в конфигурацию.

Функции глобальных компонентов вытекают из HA framework. Сюда относятся:

  • глобальные устройства с общим пространством имен устройств кластера;
  • глобальная файловая служба, организующая доступ к каждому файлу системы для каждого узла так, как будто он находится в своей локальной файловой системе;
  • глобальная сетевая служба, предоставляющая балансировку нагрузки и возможность получать доступ к кластерным службам через единый IP.

Пользовательские компоненты управляют кластерной средой на верхнем уровне прикладного интерфейса. Есть возможность вести администрирование как через графический интерфейс, так и через командную строку. Модули, которые отслеживают работу приложений, запускают и останавливают их, называются агентами. Существует библиотека готовых агентов для стандартных приложений; с каждым релизом этот список пополняется.

Программные компоненты Veritas Cluster Server

Схематически двухузловой VCS-кластер представлен на рис. 7. Межузловое взаимодействие в VCS основано на двух протоколах - LLT и GAB. Для поддержки целостности кластера VCS использует внутреннюю сеть.

LLT (Low Latency Transport) - это разработанный Veritas протокол, функционирующий поверх Ethernet как высокоэффективная замена IP-стека и используемый узлами во всех внутренних взаимодействиях. Для требуемой избыточности в межузловых коммуникациях требуется как минимум две полностью независимые внутренние сети. Это необходимо, чтобы VSC мог различить сетевую и системную неисправность.

Протокол LLT выполняет две основные функции: распределение трафика и отправку heartbeating. LLT распределяет (балансирует) межузловое взаимодействие между всеми доступными внутренними связями. Такая схема гарантирует, что весь внутренний трафик случайно распределен между внутренними сетями (их может быть максимум восемь), что повышает производительность и устойчивость к отказу. В случае неисправности одного линка данные будут перенаправлены на оставшиеся другие. Кроме того, LLT отвечает за отправку через сеть heartbeat-трафика, который используется GAB.

GAB (Group Membership Services/Atomic Broadcast) - это второй протокол, используемый в VCS для внутреннего взаимодействия. Он, как и LLT, ответственен за две задачи. Первая - это членство узлов в кластере. GAB получает через LLT heartbeat от каждого узла. Если система долго не получает отклика от узла, то она маркирует его состояние как DOWN - нерабочий.

Вторая функция GAB - обеспечение надежного межкластерного взаимодействия. GAB предоставляет гарантированную доставку бродкастов и сообщений «точка-точка» между всеми узлами.

Управляющая составляющая VCS - VCS engine, или HAD (High Availability daemon), работающая на каждой системе. Она отвечает за:

  • построение рабочих конфигураций, получаемых из конфигурационных файлов;
  • распределение информации между новыми узлами, присоединяемыми к кластеру;
  • обработку ввода от администратора (оператора) кластера;
  • выполнение штатных действий в случае сбоя.

HAD использует агенты для мониторинга и управления ресурсами. Информация о состоянии ресурсов собирается от агентов на локальных системах и передается всем членам кластера. HAD каждого узла получает информацию от других узлов, обновляя свою собственную картину всей системы. HAD действует как машина репликации состояния (replicated state machine RSM), т. е. ядро на каждом узле имеет полностью синхронизированную со всеми остальными узлами картину состояния ресурсов.

Кластер VSC управляется либо через Java-консоль, либо через Web.

Что лучше

Вопрос о том, когда какой кластер лучше использовать, мы уже обсуждали выше. Еще раз подчеркнем, что продукт SC написан Sun под собственную ОС и глубоко с ней интегрирован. VCS - продукт многоплатформенный, а следовательно, более гибкий. В табл. 2 сопоставлены некоторые возможности этих двух решений.

В заключение хотелось бы привести еще один аргумент в пользу применения SC в среде Solaris. Используя и оборудование, и ПО от единого производителя - Sun Microsystems, заказчик получает сервис в «едином окне» на все решение. Несмотря на то что вендоры сейчас создают общие центры компетенции, время на трансляцию запросов между производителями ПО и оборудования снизит скорость отклика на инцидент, что не всегда устраивает пользователя системы.

Территориально распределенный кластер

Мы рассмотрели, как строится и работает кластер высокой доступности в рамках одной площадки. Такая архитектура способна защитить только от локальных проблем в рамках одного узла и связанных с ним данных. В случае проблем, затрагивающих всю площадку, будь то технические, природные или еще какие-то, вся система окажется недоступной. Сегодня все чаще возникают задачи, критичность которых требует обеспечить миграцию служб не только внутри площадки, но и между территориально разнесенными ЦОД. При проектировании таких решений приходится учитывать новые факторы - расстояние между площадками, пропускную способность каналов и т. д. Какую репликацию предпочесть - синхронную или асинхронную, хостовую или средствами массивов, какие протоколы использовать? От решения этих вопросов может зависеть успех проекта.

Репликация данных с основной площадки на резервную чаще всего выполняется при помощи одного из популярных пакетов: Veritas Volume Replicator, EMC SRDF, Hitachi TrueCopy, Sun StorageTek Availability Suite.

При неисправности оборудования или проблеме с приложением или базой данных кластерное ПО вначале попытается перевести прикладной сервис на другой узел основной площадки. Если основная площадка по какой либо причине оказывается недоступной для внешнего мира, все службы, включая DNS, мигрируют на резервную площадку, где благодаря репликации уже присутствуют данные. Таким образом, для пользователей сервис возобновляется.

Недостаток такого подхода - огромная стоимость развертывания дополнительной «горячей» площадки с оборудованием и сетевой инфраструктурой. Однако преимущество полной защиты может перевесить эти дополнительные расходы. Если центральный узел в течение длительного времени не в состоянии предоставлять сервис, это может привести к крупным потерям и даже к гибели бизнеса.

Испытание системы до катастрофы

Согласно результатам проведенного компанией Symantec исследования, испытание плана аварийного восстановления проводит только 28% компаний. К сожалению, большинство заказчиков, с которыми автору приходилось беседовать по этому вопросу, вообще не имели такого плана. Причины, по которым не проводится тестирование, - отсутствие времени у администраторов, нежелание делать это на «живой» системе и отсутствие тестового оборудования.

Для испытаний можно привлечь симулятор, входящий в пакет VSC. Пользователи, выбравшие в качестве кластерного ПО VCS, могут провести испытания своих настроек на Cluster Server Simulator, который позволит на ПК проверить стратегию миграции приложений между узлами.

Заключение

Задача предоставления сервиса с высоким уровнем доступности весьма затратна как по стоимости оборудования и ПО, так и по стоимости дальнейшего обслуживания и технической поддержки системы. Несмотря на кажущуюся простоту теории и несложную инсталляцию, кластерная система при углубленном ее изучении оказывается сложным и дорогим решением. В данной статье техническая сторона работы системы рассматривалась только в общих чертах, между тем по отдельным вопросам работы кластера, например, определения членства в нем, можно было бы написать отдельную статью.

Кластеры обычно строятся для задач, критичных для бизнеса, где единица простоя выливается в большие потери, например, для биллинговых систем. Можно было бы рекомендовать следующее правило, определяющее, где разумно использовать кластеры: там, где время простоя сервиса не должно превышать полутора часов, кластер - подходящее решение. В остальных случаях можно рассмотреть менее дорогие варианты.

Blue Gene /L и семейства SGI Altix.

В качестве базового программного обеспечения для организации вычислений на кластерных системах рассматривается Windows Compute Cluster Server ( CCS ) 2003. Дается его общая характеристика и состав сервисов, работающих на узлах кластеров.

В заключение данного раздела, приводятся правила работы с консолью запуска и управления заданиями CCS . Описываются подробности работы планировщика CCS при исполнении последовательностей заданий на кластере.

1.1. Архитектура высокопроизводительных процессоров и кластерных систем

В истории развития архитектуры компьютерных процессоров можно выделить два крупных этапа:

  • 1-й этап - увеличение тактовой частоты работы процессоров (до 2000 г.),
  • 2-й этап - появление многоядерных процессоров (после 2000) г.

Таким образом, подход на основе SMP ( Symmetrical MultiProcessing ), который развивался при построении высокопроизводительных серверов, в которых несколько процессоров разделяют ресурс системы, и, в первую очередь , оперативную память (см. Рис 1.1), сместился "вниз" на уровень ядер внутри процессора.


Рис. 1.1.

На пути к многоядерным процессорам, первой появилась технология Hyper-Threading , впервые примененная в 2002 г. в процессорах Intel Pentium 4:


Рис. 1.2.

В этой технологии два виртуальных процессора разделяют между собой все ресурсы одного физического процессора, а именно, кэши, конвейер исполнения и отдельные исполнительные устройства. При этом, если один виртуальный процессор занял общий ресурс , то второй будет ожидать его освобождения. Тем самым, процессор с Hyper-Threading можно сравнить с многозадачной операционной системой, обеспечивающей каждому работающему в ней процессу свой виртуальный компьютер с полным набором средств и занимающейся планированием порядка и времени работы этих процессов на физическом оборудовании. Только в случае с Hyper-Threading , все это происходит на значительно более низком аппаратном уровне. Тем не менее, два потока команд позволяют более эффективно загрузить исполнительные устройства процессора. Реальный прирост производительности процессора от применения технологии Hyper-Threading оценивается от 10 до 20 процентов.

Полноценный двухъядерный процессор (см. Рис 1.3), на отдельных задачах демонстрирует прирост производительности от 80 до 100 процентов.


Рис. 1.3.

Таким образом, двухъядерный и, в общем случае, многоядерный процессор , можно рассматривать как SMP -систему в миниатюре, в которой отсутствует необходимость использования сложных и дорогих многопроцессорных материнских плат.

Более того, каждое ядро может (как, например, в процессоре Intel Pentium Extreme Edition 840) поддерживать технологию Hyper-Threading , а потому такого рода двухъядерный процессор может выполнять четыре программных потока одновременно.

В начале 2007 г., корпорация Intel представила 80-ядерный однокристальный процессор , получивший название Teraflops Research Chip (http://www.intel.com/research/platform/terascale/teraflops.htm). Этот процессор может достигать производительности 1,01 терафлопс при минимальной тактовой частоте ядра 3,16 ГГц и напряжении 0,95 В. При этом общее энергопотребление чипа составляет всего 62 Вт.

По прогнозам Intel, коммерческие варианты процессоров с большим числом ядер появятся в ближайшие 5 лет, а к 2010 г. четверть объема всех поставляемых серверов будут иметь терафлопную производительность .

Кластерные вычислительные системы и их архитектура

Кластер - это локальная (расположенная территориально в одном месте) вычислительная система, состоящая из множества независимых компьютеров и сети, связывающей их. Кроме того, кластер является локальной системой потому, что он управляется в рамках отдельного административного домена как единая компьютерная система.

Компьютерные узлы из которых он состоит, являются стандартными, универсальными (персональными) компьютерами, используемыми в различных областях и для разнообразных приложений. Вычислительный узел может содержать либо один микропроцессор, либо несколько, образуя, в последнем случае, симметричную (SMP-) конфигурацию.

Сетевая компонента кластера может быть либо обычной локальной сетью, либо быть построена на основе специальных сетевых технологий, обеспечивающих сверхбыструю передачу данных между узлами кластера. Сеть кластера предназначена для интеграции узлов кластера и, обычно, отделена от внешней сети, через которую осуществляется доступ пользователей к кластеру.

Программное обеспечение кластеров состоит из двух компонент:

  • средств разработки/программирования и
  • средств управления ресурсами.

К средствам разработки относятся компиляторы для языков, библиотеки различного назначения, средства измерения производительности, а также отладчики, что, всё вместе, позволяет строить параллельные приложения.

К программному обеспечению управления ресурсами относятся средства инсталляции, администрирования и планирования потоков работ.

Хотя для параллельной обработки существует очень много моделей программирования, но, на настоящий момент, доминирующим подходом является модель на основе "передачи сообщений" ( message passing ), реализованная в виде стандарта MPI ( Message Passing Interface). MPI - это библиотека функций, с помощью которых в программах на языках C или Фортран можно передавать сообщения между параллельными процессами, а также управлять этими процессами.

Альтернативами такому подходу являются языки на основе так называемого "глобального распределенного адресного пространства" (GPAS - global partitioned address space), типичными представителями которых являются языки HPF (High Performance Fortran) и UPC (Unified Parallel C).

(К слову, говоря, при этом есть возможность собрать недорогой и эффективный кластер из xbox 360 или PS3, процессоры там примерно как Power, и на миллион можно купить не одну приставку.)

Исходя из этого отметим интересные по цене варианты построения высокопроизводительной системы. Разумеется, она должна быть многопроцессорной. У Intel для таких задач используются процессоры Xeon, у AMD – Opteron.

Если много денег


Отдельно отметим крайне дорогую, но производительную линейку процессоров на сокете Intel Xeon LGA1567.
Топовый процессор этой серии – E7-8870 с десятью ядрами 2,4 ГГц. Его цена $4616. Для таких CPU фирмы HP и Supermicro выпускают! восьмипроцессорные! серверные шасси. Восемь 10-ядерных процессоров Xeon E7-8870 2.4 ГГц с поддержкой HyperThreading поддерживают 8*10*2=160 потоков, что в диспетчере задач Windows отображается как сто шестьдесят графиков загрузки процессоров, матрицей 10x16.

Для того, чтобы восемь процессоров уместились в корпусе, их размещают не сразу на материнской плате, а на отдельных платах, которые втыкаются в материнскую плату. На фотографии показаны установленные в материнскую плату четыре платы с процессорами (по два на каждой). Это решение Supermicro. В решении HP на каждый процессор приходится своя плата. Стоимость решения HP составляет два-три миллиона, в зависимости от наполнения процессорами, памятью и прочим. Шасси от Supermicro стоит $10 000, что привлекательнее. Кроме того в Supermicro можно поставить четыре сопроцессорных платы расширения в порты PCI-Express x16 (кстати, еще останется место для Infiniband-адаптера чтобы собирать кластер из таких), а в HP только две. Таким образом, для создания суперкомпьютера восьмипроцессорная платформа от Supermicro привлекательнее. На следующем фото с выставки представлен суперкомпьютер в сборе с четырьмя GPU платами.


Однако это очень дорого.
Что подешевле
Зато есть перспектива сборки суперкомпьютера на более доступных процессорах AMD Opteron G34, Intel Xeon LGA2011 и LGA 1366.

Чтобы выбрать конкретную модель, я составил таблицу, в которой сосчитал для каждого процессора показатель цена/(число ядер*частота). Я отбросил из расчета процессоры частотой ниже 2 ГГц, и для Intel - с шиной ниже 6,4GT/s.

Модель
Кол-во ядер
Частота
Цена, $
Цена/ядро, $
Цена/Ядро/ГГц
AMD





6386 SE
16
2,8
1392
87
31
6380
16
2,5
1088
68
27
6378
16
2,4
867
54
23
6376
16
2,3
703
44
19
6348
12
2,8
575
48
17
6344
12
2,6
415
35
13
6328
8
3,2
575
72
22
6320
8
2,8
293
37
13
INTEL





E5-2690
8
2,9
2057
257
89
E5-2680
8
2,7
1723
215
80
E5-2670
8
2,6
1552
194
75
E5-2665
8
2,4
1440
180
75
E5-2660
8
2,2
1329
166
76
E5-2650
8
2
1107
138
69
E5-2687W
8
3,1
1885
236
76
E5-4650L
8
2,6
3616
452
174
E5-4650
8
2,7
3616
452
167
E5-4640
8
2,4
2725
341
142
E5-4617
6
2,9
1611
269
93
E5-4610
6
2,4
1219
203
85
E5-2640
6
2,5
885
148
59
E5-2630
6
2,3
612
102
44
E5-2667
6
2,9
1552
259
89
X5690
6
3,46
1663
277
80
X5680
6
3,33
1663
277
83
X5675
6
3,06
1440
240
78
X5670
6
2,93
1440
240
82
X5660
6
2,8
1219
203
73
X5650
6
2,66
996
166
62
E5-4607
6
2,2
885
148
67
X5687
4
3,6
1663
416
115
X5677
4
3,46
1663
416
120
X5672
4
3,2
1440
360
113
X5667
4
3,06
1440
360
118
E5-2643
4
3,3
885
221
67

Жирным курсивом выделена модель с минимальным показателем соотношения, подчеркнутым – самый мощный AMD и на мой взгляд наиболее близкий по производительности Xeon.

Таким, образом, мой выбор процессоров для суперкомпьютера – Opteron 6386 SE, Opteron 6344, Xeon E5-2687W и Xeon E5-2630.

Материнские платы

PICMG
На обычные материнские платы невозможно поставить более четырех двухслотовых плат расширения. Есть и другая архитектура – использование кросс-плат, таких как BPG8032 PCI Express Backplane.


В такую плату ставятся платы расширения PCI Express и одна процессорная плата, чем-то похожая на те, которые установлены в восьмипроцессорных серверах на базе Supermicro, о которых речь шла выше. Но только эти процессорные платы подчиняются отраслевым стандартам PICMG. Стандарты развиваются медленно и такие платы зачастую не поддерживают самые современные процессоры. Максимум такие процессорные платы сейчас выпускают на два Xeon E5-2448L - Trenton BXT7059 SBC.

Стоить такая система будет без GPU не меньше $5000.

Готовые платформы TYAN
За ту же примерно сумму можно приобрести готовую платформу для сборки суперкомпьютеров TYAN FT72B7015 . В такой можно установить до восьми GPU и два Xeon LGA1366.
«Обычные» серверные материнские платы
Для LGA2011
Supermicro X9QR7-TF - на эту материнскую плату можно установить 4 Платы расширения и 4 процессора.

Supermicro X9DRG-QF - эта плата специально разработана для сборки высокопроизводительных систем.

Для Opteron
Supermicro H8QGL-6F - эта плата позволяет установить четыре процессора и три платы расширения

Усиление платформы платами расширения

Этот рынок почти полностью захвачен NVidia, которые выпускают помимо геймерских видеокарт еще и вычислительные карты. Меньшую долю рынка имеет AMD, и относительно недавно на этот рынок пришла корпорация Intel.

Особенностью таких сопроцессоров является наличие на борту большого объема оперативной памяти, быстрые расчеты с двойной точностью и энергоэффективность.

FP32, Tflops FP64, Tflops Цена Память, Гб
Nvidia Tesla K20X 3.95 1.31 5.5 6
AMD FirePro S10000 5.91 1.48 3.6 6
Intel Xeon Phi 5110P 1 2.7 8
Nvidia GTX Titan 4.5 1.3 1.1 6
Nvidia GTX 680 3 0.13 0.5 2
AMD HD 7970 GHz Edition 4 1 0.5 3
AMD HD 7990 Devil 13 2x3,7 2х0.92 1.6 2x3

Топовое решение от Nvidia называется Tesla K20X на архитектуре Kepler. Именно такие карты стоят в самом мощном в мире суперкомпьютере Titan. Однако недавно Nvidia выпустила видеокарту Geforce Titan. Старые модели были с урезанной производительностью FP64 до 1/24 от FP32 (GTX680). Но в Титане производитель обещает довольно высокую производительность в расчетах с двойной точностью. Решения от AMD тоже неплохи, но они построены на другой архитектуре и это может создать трудности для запуска вычислений, оптимизированных под CUDA (технология Nvidia).

Решение от Intel - Xeon Phi 5110P интересно тем, что все ядра в сопроцессоре выполнены на архитектуре x86 и не требуется особой оптимизации кода для запуска расчетов. Но мой фаворит среди сопроцессоров – относительно недорогая AMD HD 7970 GHz Edition. Теоретически эта видеокарта покажет максимальную производительность в расчете на стоимость.

Можно соединить в кластер

Для повышения производительности системы несколько компьютеров можно объединить в кластер, который будет распределять вычислительную нагрузку между входящими в состав кластера компьютерами.

Использовать в качестве сетевого интерфейса для связи компьютеров обычный гигабитный Ethernet слишком медленно. Для этих целей чаще всего используют Infiniband. Хост адаптер Infiniband относительно сервера стоит недорого. Например, на международном аукционе Ebay такие адаптеры продают по цене от $40. Например, адаптер X4 DDR (20Gb/s) обойдется с доставкой до России примерно в $100.

При этом коммутационное оборудование для Infiniband стоит довольно дорого. Да и как уже было сказано выше, классическая звезда в качестве топологии вычислительной сети – не лучший выбор.

Однако хосты InfiniBand можно подключать друг к другу напрямую, без свича. Тогда довольно интересным становится, например, такой вариант: кластер из двух компьютеров, соединенных по infiniband. Такой суперкомпьютер вполне можно собрать дома.

Сколько нужно видеокарт

В самом мощном суперкомпьютере современности Cray Titan отношение процессоров к «видеокартам» 1:1, то есть в нем 18688 16-ядерных процессоров и 18688 Tesla K20X.

В Тяньхэ-1А – китайском суперкомпьютере на ксеонах отношение следующее. Два шестиядерных процессора к одной «видюшке» Nvidia M2050 (послабее, чем K20X).

Такое отношение мы и примем для наших сборок за оптимальное (ибо дешевле). То есть 12-16 ядер процессоров на один GPU. На таблице ниже жирным обозначены практически возможные варианты, подчеркиванием – наиболее удачные с моей точки зрения.

GPU Cores 6-core CPU 8-core CPU 12-core CPU 16-core CPU
2 24 32 4
5
3
4
2
3
2
2
3 36 48 6
8
5
6
3
4
2
3
4 48 64 8
11
6
8
4
5
3
4

Если система с уже установленным отношением процессоров/видеокарт сможет принять «на борт» еще дополнительно вычислительных устройств, то мы их добавим, чтобы увеличить мощность сборки.

Итак, сколько стоит

Представленные ниже варианты – шасси суперкомпьютера без оперативной памяти, жестких дисков и ПО. Во всех моделях используется видеоадаптер AMD HD 7970 GHz Edition. Его можно заменить на другой, по требованию задачи (например, на xeon phi). Там, где система позволяет, одна из AMD HD 7970 GHz Edition заменена на трехслотовую AMD HD 7990 Devil 13.
Вариант 1 на материнской плате Supermicro H8QGL-6F


Материнская плата Supermicro H8QGL-6F 1 1200 1200
Процессор AMD Opteron 6344 4 500 2000
Кулер Процессора Thermaltake CLS0017 4 40 160
Корпус 1400Вт SC748TQ-R1400B 1 1000 1000
Графический ускоритель AMD HD 7970 GHz Edition 3 500 1500
5860

Теоретически, производительность составит около 12 Tflops.
Вариант 2 на материнской плате TYAN S8232, кластерный


Эта плата не поддерживает Opteron 63xx, поэтому используется 62xx. В этом варианте два компьютера объединены в кластер по Infiniband x4 DDR двумя кабелями. Теоретически скорость соединения в этом случае упрется в скорость PCIe x8 то есть 32Гб/с. Блоков питания используется два. Как их согласовать между собой, можно найти в интернете.
Количество Цена Сумма
Материнская плата TYAN S8232 1 790 790
Процессор AMD Opteron 6282SE 2 1000 2000
Кулер Процессора Noctua NH-U12DO A3 2 60 120
Корпус Antec Twelve Hundred Black 1 200 200
Блок питания FSP AURUM PRO 1200W 2 200 400
Графический ускоритель AMD HD 7970 GHz Edition 2 500 1000
Графический ускоритель AX7990 6GBD5-A2DHJ 1 1000 1000
Infiniband адаптер X4 DDR Infiniband 1 140 140
Infiniband кабель X4 DDR Infiniband 1 30 30
5680 (за один блок)

Для кластера таких конфигураций нужно две и стоимость их составит $11360 . Его энергопотребление при полной нагрузке будет около 3000Вт. Теоретически, производительность составит до 31Tflops.

Кластерные вычисления не являются новой областью. Однако в последнее время интерес к ним значительно возрос - многие организации рассматривают кластеры как основной инструмент для решения таких проблем, как повышение производительности приложений, обеспечение высокой доступности, а также высокой масштабируемости своих вычислительных систем.

Успехи, достигнутые в кластерных технологиях в последнее десятилетие, позволили использовать для их построения недорогие компьютеры. Экономичность, вычислительная мощность и гибкость таких кластеров сделали их привлекательной альтернативой централизованной модели вычислений на базе традиционных суперкомпьютеров (в дальнейшем под словом «кластер» мы будем понимать массовый продукт, в отличие от «спецзаказа»).

Кластеры появились как недорогая и эффективная альтернатива монокорпусным суперкомпьютерам с оригинальной закрытой архитектурой. Построенные на базе серийно выпускаемых компонентов, они широко применяются для выполнения высокопроизводительных вычислений, обеспечения доступности и масштабируемости. И если первая возможность интересует в основном академические круги, то две последние весьма привлекательны для бизнеса любого масштаба. И не только привлекательны, но и доступны.

Сегодня недорогой кластер из компонентов, находящихся в массовом производстве, может собрать практически любая уважающая себя компьютерная фирма, а с выходом такой кластерной ОС, как Windows Computing Cluster Server 2003, допускающей довольно простую инсталляцию, кластерные решения начального уровня становятся доступными малому и среднему бизнесу. И, пожалуй, не покажется необоснованным предположение, что перманентное снижение цен на аппаратные и программные компоненты и скоростные сетевые технологии вскоре сделают кластеры начального уровня привычным элементом ИС любого масштаба.

Поэтому в Тему недели, посвященную кластерным вычислениям, мы постарались включить не только обзорную часть, но и статьи о конкретных и, несомненно, востребованных в ближайшем будущем украинским бизнесом продуктах. В частности, читатель найдет здесь и практическое занятие, выполненное в нашей Тестовой лаборатории, и описание кластерных ОС Windows Computing Cluster Server 2003/2008, которые имеют все шансы стать популярными.

Прежде всего напомним определение кластера. Так называется локальная (в противоположность распределенной) вычислительная система, состоящая из множества независимых компьютеров, связанных между собой каналами передачи данных. Локальность кластера заключается в том, что все его подсистемы «видны» в едином административном домене, и управление им выполняется как единой вычислительной системой. Компьютеры, входящие в состав кластера, именуются узлами (node). Обычно это серийно выпускаемые универсальные компьютеры, способные работать самостоятельно. Узлы могут быть одно- или мультипроцессорными (конфигурация SMP). В классической схеме все узлы при работе с приложениями разделяют внешнюю память на массиве жестких дисков, используя внутренние HDD для более специальных функций. Для межузлового взаимодействия обычно применяется какая-либо стандартная сетевая технология, хотя это не исключает отдельно разработанных каналов связи. Кластерная сеть является обособленной - она изолирована от внешней сетевой среды.

Классификация

Кластеры можно классифицировать по разным признакам, однако чаще всего их разбивают на три категории, которые определяются характером и назначением приложения.

Кластеры высокой готовности (High Availability, HA) . Иногда их еще называют отказоустойчивыми. Такие кластеры проектируются для обеспечения конечным пользователям бесперебойного доступа к данным или сервисам (в типичном случае - веб-сервисам). Как правило, один экземпляр приложения работает на одном узле, а когда тот становится недоступным, то управление им перехватывается другим узлом (рис. 1). Подобная архитектура позволяет также проводить ремонт и профилактические работы, не останавливая сервисы. Вдобавок, если один узел выходит из строя, сервис может быть восстановлен без ущерба для доступности остальных. Правда, производительность системы понизится.

Кластеры высокой готовности являются наилучшим выбором для обеспечения работы критически важных приложений или баз данных, почты, файл-, принт- и веб-серверов, а также серверов приложений. В отличие от распределенных и параллельных вычислений, эти кластеры легко и прозрачно включают имеющиеся у организаций приложения, не ориентированные на кластеры, что позволяет без проблем расширять сеть по мере роста бизнеса.

Кластеры балансировки нагрузки (Load Balancing) . Этот тип кластеров распределяет входящие запросы между множеством узлов, на которых работают одинаковые программы или размещен один и тот же контент (рис. 2). Каждый узел способен обрабатывать запросы к одному и тому же приложению или контенту. Если какой-нибудь из узлов выходит из строя, запросы перераспределяются среди оставшихся. В типичном случае такие кластеры используются для веб-хостинга.

Обе рассмотренные выше кластерные технологии могут быть объединены для увеличения надежности, доступности и масштабируемости приложений.

Кластеры для высокопроизводительных вычислений (High-Performance Cluster, HPC) . Традиционно параллельные вычисления выполнялись на мультипроцессорных системах, специально для этого спроектированных. В них множество процессоров разделяли общую память и шинный интерфейс в пределах одного компьютера. С появлением высокоскоростной коммутационной технологии стало возможным объединять компьютеры в кластеры для параллельных вычислений.

Параллельный кластер - это система, использующая множество узлов для распараллеливания вычислений при решении специфической задачи. В отличие от кластеров балансировки нагрузки и высокой готовности, которые распределяют запросы/задачи между узлами, обрабатывающими их в целом, в параллельной среде запрос подразделяется на множество подзадач, а те, в свою очередь, распределяются для обработки между узлами внутри кластера. Применяются параллельные кластеры главным образом для приложений, требующих интенсивных математических вычислений.

Компоненты кластера

Базовые строительные блоки (компоненты) кластеров разбиваются на несколько категорий: непосредственно узлы, кластерное ПО, выделенная сеть, производящая обмен данными между узлами, и соответствующие сетевые протоколы.

Узлы

Конструктивно узлы мигрировали от традиционных пьедестальных корпусов к монтируемым в одну стойку мультипроцессорным системам и лезвийным серверам, которые обеспечивают более высокую процессорную плотность в условиях дефицита пространства.

В последнее время производительность процессоров, памяти, скорость доступа к жестким дискам и их емкость значительно увеличились. Интересно отметить, что при таком, в некоторых случаях экспоненциальном, росте быстродействия стоимость этих технологий существенно снизилась.

В типичном случае узел в кластере может быть управляющим (главным) или вычислительным (подчиненным) (рис. 3). Главный узел может быть только один. Он отвечает за работу кластера, а также является ключевым для кластерного ПО промежуточного слоя, процессов маршрутизации, диспетчеризации и мониторинга состояния каждого вычислительного узла. Последние выполняют вычисления и операции с системой хранения данных. Эти узлы, по сути, представляют собой полнофункциональные автономные компьютеры и, как правило, продаются как десктопы или серверы «из коробки».

Программное обеспечение

Как и в обычном настольном компьютере, ОС кластера является сердцем каждого его узла. Она незримо присутствует при любом действии пользователя, будь то обращение к файловой системе, отправка сообщений или старт дополнительного процесса. Пользователи могут выбирать различные парадигмы программирования или ПО промежуточного слоя, но кластерная ОС для всех одна и та же.

Типичный эскиз проекта ОС приведен в таблице. На нем показаны базовые блоки традиционного узла. Основная роль кластерной ОС заключается в первую очередь в том, чтобы мультиплексировать множество пользовательских процессов на единый набор аппаратных компонентов (управление ресурсами) и обеспечить пригодные абстракции для высокоуровневого ПО. Некоторые из этих абстракций включают защиту границ памяти, координацию процессов/потоков и коммуникаций и управление устройствами. Нужно отметить, что большинство специфических для кластера функций выполняется ПО промежуточного слоя. И для этого есть основания. Действительно, ОС кластера достаточно сложна, и не всегда ясно, как произведенные изменения повлияют на остальные системы. Поэтому необходимые модификации лучше проводить на уровне ПО промежуточного слоя, причем добавленная в него новая функциональность может быть портирована на другие ОС.

В приведенном определении кластера было упомянуто, что он виден администратору и пользователю как единая вычислительная система. Это достигается с помощью образа единой системы (Single System Image, SSI) . Именно он скрывает неоднородную и распределенную природу имеющихся ресурсов и представляет их пользователям и приложениям как единый вычислительный ресурс. SSI может быть реализован на одном или нескольких из следующих уровней: аппаратном, ОС, ПО промежуточного слоя или/и приложения. Вот пример нескольких ключевых сервисов, предоставляемых SSI кластера:

  • единая точка входа;
  • единый пользовательский интерфейс;
  • единое пространство процессов;
  • единое пространство памяти и ввода-вывода;
  • единая иерархия файлов;
  • единая точка контроля и управления.

Такие системы, как Digital/Compaq Memory Channel и Distributed Shared Memory обеспечивают SSI на аппаратном уровне и позволяют пользователям видеть кластер как систему с разделяемой памятью. ОС SCO UnixWare NonStop Cluster, Sun Solaris-MC, GLUNIX и MOSIX поддерживают SSI на уровне ядра.

Реализация SSI на каждом из вышеперечисленных уровней имеет свои pro и contra. Так, аппаратный уровень может предоставить наивысшую степень прозрачности, но из-за жесткой архитектуры он не менее гибок, чем требуется для расширений и улучшений системы. Уровень ядра предоставляет SSI как разработчикам, так и конечным пользователям, однако он слишком дорог и его трудно модифицировать. Основное преимущество уровня приложений по сравнению с уровнем ядра заключается в том, что на первом SSI реализуется поэтапно, и пользователь получает предоставляемые возможности немедленно, тогда как при втором подходе продукт не может выйти на рынок, пока все компоненты ядра не будут поддерживать SSI. Уровень ПО промежуточного слоя является компромиссным между двумя вышеупомянутыми механизмами реализации SSI.

Сетевое оборудование и протоколы

Создание общедоступных кластеров стало возможным только благодаря адекватным сетевым технологиям для межузловых коммуникаций. Общедоступные кластеры включают одну или более выделенных сетей для передачи пакетов сообщений внутри распределенной системы. Это отличает кластер от ансамбля слабосвязанных посредством разделяемой ЛВС автономных компьютеров.

Сегодня у разработчиков кластеров имеются широкие возможности для выбора сетевой технологии. Поскольку стоимость сетевого оборудования для кластеров варьируется от «почти даром» до нескольких тысяч долларов на один узел, то таковой может быть не последней составляющей в формировании цены продукта. Практика дает примеры построения весьма эффективных кластеров с использованием недорогого сетевого оборудования, которое можно увидеть в обычной ЛВС. В то же время отдельные сетевые продукты, специально разработанные для кластерных коммуникаций, сравнимы по стоимости с рабочими станциями. Выбор сетевой технологии зависит от ряда факторов: цены, производительности, совместимости с другим кластерным оборудованием и ПО, а также от коммуникационных характеристик приложений, которые будут выполняться на кластере.

Производительность сети в общем описывается в терминах латентности и полосы пропускания. Латентностью называется отрезок времени от запроса данных до их получения, или время, за которое они передаются от одного компьютера другому, включая непродуктивные затраты ПО на формирование сообщения и время передачи битов. В идеале в приложениях, написанных для кластеров, обмен сообщениями должен быть минимальным. Если приложение посылает большое количество коротких сообщений, тогда его производительность будет зависеть от латентности сети, если же происходит обмен длинными сообщениями, то основное влияние на этот параметр окажет ее пропускная способность. Очевидно, производительность приложения будет наилучшей при низкой латентности и широкой полосе пропускания. Для удовлетворения этих двух требований необходимы эффективные коммуникационные протоколы, минимизирующие объем служебных данных, и быстрые сетевые устройства.

Коммуникационные, или сетевые, протоколы определяют правила и соглашения, которые будут использовать два или более компьютеров в сети для обмена информацией. Они могут быть с установкой или без установки соединения, предоставлять разный уровень надежности - с полной гарантией доставки в порядке следования пакетов и без таковой, синхронные (без буферизации) и асинхронные (с буферизацией).

Для кластерных коммуникаций применяются как традиционные сетевые протоколы, разработанные первоначально для Интернета (IP), так и созданные специально. Помимо этого, имеются два относительно новых стандарта, также специально предназначенных для кластеров. Мы не будем останавливаться на достаточно знакомом нашим читателям протоколе IP, равно как и на остальных, поскольку все они довольно специфичны. Перечислим лишь их названия, чтобы интересующиеся могли обратиться либо к литературе, либо к «всезнающему» Интернету. Это, в частности, протоколы Active Messages, Fast Messages, Virtual Memory-Mapped Communication system, U-net и Basic Interface for Parallelism. Обратимся к двум стандартам.

К 1997 г. исследования в области протоколов с низкой латентностью продвинулись настолько, что в итоге привели к созданию нового стандарта для кластерных коммуникаций Virtual Interface Architecture (VIA). Одновременно индустрия работала над стандартами для разделяемых подсистем хранения. Результатом этих усилий явился InfiniBand.

VIA - это коммуникационный стандарт, объединяющий лучшие достижения различных проектов. Он был создан консорциумом академических и индустриальных партнеров, включающим Intel, Compaq и Microsoft. Версия VIA 1.1 с поддержкой гетерогенных аппаратных средств стала доступной в начале 2001 г. Как следует из названия, базируется VIA на концепции виртуального сетевого интерфейса. Стандарт предусматривает, что перед отправкой сообщения приемный и посылающий буфера должны быть выделены и привязаны к физической памяти. После того как буфера и связанные с ними структуры данных сформированы, никаких системных вызовов не требуется. Операции приема и отправки в пользовательском приложении состоят из записи дескриптора в очередь. Приложение может выбирать, ждать ли ему подтверждения завершения операции или продолжать основную работу, пока сообщение обрабатывается.

Хотя VIA может быть доступен прямо для прикладного программирования, многие разработчики систем считают, что это слишком низкий уровень для приложений, так как последние должны быть ответственными за распределение части физической памяти и следить за ее эффективным использованием. Предполагается, что большинство производителей ОС и ПО промежуточного слоя обеспечат интерфейс с VIA, который будет поддерживать прикладное программирование. Так, осенью 2000 г. большинство поставщиков баз данных предоставили версии своих продуктов, работающих поверх VIA. Быстро становится доступным и другое кластерное ПО, например файловые системы.

Стандарт InfiniBand был поддержан консорциумом индустриальных партнеров, в том числе Compaq, Dell, HP, IBM, Intel, Microsoft и Sun Microsystems. Архитектура InfiniBand заменяет разделяемую шину, которая является стандартом для системы ввода-вывода в современных компьютерах, высокоскоростной последовательной, базированной на механизме каналов коммутационной фабрикой. Все системы и устройства подключаются к фабрике посредством канального адаптера хоста (Host Channel Adaptor, HCA), который обеспечивает соединение центрального процессора хоста со структурой InfiniBand, или канального адаптера целевого узла (Target Channel Adaptor, TCA), соединяющего InfiniBand с другими устройствами ввода-вывода типа Ethernet, Fibre Channel или с системами хранения данных. Канал InfiniBand дуплексный и работает с пропускной способностью 2,5 Гб/с в одном направлении в топологии «точка-точка». Данные посылаются пакетами, имеется шесть режимов передачи: надежное и ненадежное соединение, надежная и ненадежная дейтаграмма, многоадресная рассылка и необработанные пакеты («сырой» режим). Вдобавок InfiniBand поддерживает удаленный прямой доступ к памяти, который позволяет одному процессору читать или писать в память другого.

Что касается сетевого оборудования, поддерживающего межузловой обмен, то оно может быть классифицировано с помощью четырех категорий - в зависимости от того, выполняется ли подсоединение к шине ввода-вывода или к шине памяти, и от основного метода коммуникаций - с помощью сообщений или разделяемой дисковой памяти.

Из четырех категорий взаимосоединений самыми распространенными являются системы на базе сообщений и с подключением к шине ввода-вывода, поскольку в этом случае интерфейс с компьютером наиболее понятен. Шина ввода-вывода имеет, по крайней мере, аппаратное прерывание, которое может информировать процессор, что данные для чтения готовы. Такие системы реализованы во всех широкодоступных сетевых технологиях, а также в ряде последних продуктов, разработанных специально для кластерных вычислений.

В системы с подключением к шине ввода-вывода и с разделяемой дисковой памятью входят компьютеры с разделяемой дисковой подсистемой. Подсоединение к памяти менее распространено, поскольку шина памяти, вообще говоря, имеет индивидуальный дизайн для каждого типа компьютеров. Однако много таких систем реализуются с помощью ПО или посредством механизма отображения портов ввода-вывода в память, как, например, Memory Channel.

Помимо этого, существуют гибридные системы, которые комбинируют особенности нескольких категорий, скажем, InfiniBand позволяет посылать как данные на диск, так и сообщения другим узлам. Аналогично Scalable Coherent Interface (SCI) может также использовать оба механизма обмена.

Кластерные сети

Системная сеть кластера может быть построена на базе традиционных сетевых продуктов, применяемых в ЛВС, либо спроектирована специально для кластерных вычислений. В последнем случае она обеспечивает дополнительную аппаратную поддержку, которая уменьшает латентность.

Сегодня коммутируемые технологии Ethernet благодаря низкой стоимости портов и стандартизации интерфейсов лидируют в качестве систем взаимосвязи в широкодоступных кластерах. Многие компьютеры оборудуются встроенными портами 1 GE, остается лишь приобрести недорогой коммутатор. Однако при повышенных требованиях используются и специализированные сети. Сколько-нибудь подробное их описание вывело бы нас далеко за пределы возможного, поэтому из соображений полноты приведем лишь весьма конспективные сведения об отдельных из них.

Giganet (cLAN) . Технология cLAN (collapsed LAN), сегодня принадлежащая компании Emulex, была разработана с целью аппаратной поддержки VIA. Это была первая в индустрии нативная аппаратная реализация стандарта VIA. Ключевые особенности сети следующие.

На самом низком уровне коммуникационной модели находится некогерентная распределенная разделяемая память (Distributed Shared Memory, DSM). Часть виртуального адресного пространства приложения логически отображается поверх сети на физическую память в другом узле. Данные передаются между приложениями посредством записи в разделяемую область памяти с помощью стандартных инструкций записи процессора. Буфер в удаленном узле представляется посредством cookie Remote Direct Memory Access, узел-владелец которого получает право доступа к буферу.

Myrinet . Эта дуплексная сеть поставляется компанией Myricom. Она широко используется во многих академических проектах, в частности в Berkeley Network of Workstations (NOW). Физически сеть состоит из двух оптоволоконных кабелей (для нисходящего и восходящего потоков), подключаемых к хосту через общий коннектор. Компьютеры объединяются с помощью маршрутизаторов или коммутаторов (их можно конфигурировать для получения избыточных путей). Поддерживается коммутация без буферизации пакетов (cut-through), которая позволяет передавать сообщения из конца в конец с минимальной задержкой. Myrinet имеет внутриплатный программируемый процессор - он дает возможность экспериментировать со многими коммуникационными протоколами.

В Myrinet реализован ряд механизмов, обеспечивающих отказоустойчивость. К ним относятся управление потоком, контроль ошибок, проверка работоспособности каналов (heartbeat).

Последняя версия, так называемая четвертая генерация Myrinet 10G, поддерживает скорость передачи данных 10 Гб/с в каждом из направлений и совместима с 10 GE на уровне PHY. Латентность сети очень низкая - всего 5 мкс.

QsNet . Эта высокоскоростная с низкой латентностью сеть разработана компанией Quadrics Supercomputers World (QSW). Конструктивно QsNet включает две подсистемы:

  • сетевой интерфейс, состоящий из одного или более сетевых адаптеров в каждом узле;
  • многошинную сеть данных, которая объединяет компьютеры в кластер.

Сетевой интерфейс базируется на заказных микросхемах, именуемых Elan. Модификация Elan III объединяет выделенный процессор ввода-вывода для разгрузки ЦП, шину PCI (66 МГц, 64 бита), дуплексный канал (400 МГц, 8 бит), устройство управления памятью (MMU), кэш и интерфейс локальной памяти. Микросхема выполняет три типа базовых операций:

  • удаленные чтение и запись;
  • прямую передачу данных из пользовательского виртуального адресного пространства одного процессора другому без необходимости синхронизации;
  • управление протоколом.

Сеть конструируется на базе выделенных коммутаторов, которые объединяются в специальном шасси, образуя топологию толстого дерева (чем ветка ближе к корню, тем она толще, т. е. ее пропускная способность выше).

Модификация сети, выпущенная в 2003 г., основана на шине PCI-X 133 МГц и имеет латентность 1,22 мкс.

Scalable Coherent Interface (SCI) . Это первая технология взаимосвязи, разработанная специально для кластерных вычислений, которая была доведена до уровня стандарта. Архитектура SCI базируется на соединениях «точка-точка», пакетах малого размера и расщепленных транзакциях. Стандарт IEEE 1596 был опубликован в 1992 г. и специфицировал физический уровень сети и выше для распределенной по сети разделяемой кэш-когерентной (опциональной) памяти. На более высоких уровнях стандарт описывает распределенную базированную на указателях схему когерентной кэш-памяти. Такая схема позволяет кэшировать удаленную SCI-память: всякий раз, когда данные, расположенные в удаленной памяти, модифицируются, все строки кэша на всех узлах, на которых они хранятся, становятся недействительными. Кэширование удаленной SCI-памяти увеличивает производительность и допускает непосредственное прозрачное программирование разделяемой памяти.

Конечно, это далеко не все технологии, на основе которых можно построить довольно мощный кластер. В кластерах начального уровня, как правило, применяются неспециализированные решения, использующие традиционные сетевые технологии, такие как Ethernet, ATM или Fibre Channel.

Сегодня на рынке представлен широкий спектр кластеров, отличающихся типом и быстродействием процессоров, размером разделяемой узлами памяти, технологией взаимосвязи узлов, моделями и интерфейсами программирования. Однако нужно понимать, что результат, достигаемый с их помощью, в большой степени зависит от особенностей приложений, которые планируется на них развернуть.

Базовый эскиз проекта ОС
Userspace System Processes User Processes
not using
the middleware
User Processes using the middleware
Middleware
System Services User Libraries
Kernel Middleware-related Kernel Extentions
Filesystems / Communication / Programmatic Interface
Memory Manager Scheduler Drivers
Hardware Abstraction Layer
Hardware Resourses Timers & Interrupts
RAM CPUs Disks Network Cluster Interconnect Others